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ABSTRACT

Automated fundus image analysis plays an important role in the computer

aided diagnosis of ophthalmologic disorders. A lot of eye disorders, as well as cardio-

vascular disorders, are known to be related with retinal vasculature changes. Many

studies has been done to explore these relationships. However, most of the studies are

based on limited data obtained using manual or semi-automated methods due to the

lack of automated techniques in the measurement and analysis of retinal vasculature.

In this thesis, a fully automated retinal vessel width measurement technique

is proposed. This novel method models the accurate vessel boundary delineation

problem in two-dimension into an optimal surface segmentation problem in three-

dimension. Then the optimal surface segmentation problem is transformed into find-

ing a minimum-cost closed set problem in a vertex-weighted geometric graph. The

problem is modeled differently for straight vessel and for branch point because of the

different conditions in straight vessel and in branch point. Furthermore, many of the

retinal image analysis needs the location of the optic disc and fovea as a prerequisite

information, for example, in the analysis of the relationship between vessel width and

the distance to the optic disc. Hence, a simultaneous optic disc and fovea detection

method is presented, which includes a two-step classification of three classes.

The major contributions of this thesis include: 1) developing a fully auto-

mated vessel width measurement technique for retinal blood vessels, 2) developing

a simultaneous optic disc and fovea detection method, 3) validating the methods
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using multiple datasets, and 4) applying the proposed methods in multiple retinal

vasculature analysis studies.
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ABSTRACT

Automated fundus image analysis plays an important role in the computer

aided diagnosis of ophthalmologic disorders. A lot of eye disorders, as well as cardio-

vascular disorders, are known to be related with retinal vasculature changes. Many

studies has been done to explore these relationships. However, most of the studies are

based on limited data obtained using manual or semi-automated methods due to the

lack of automated techniques in the measurement and analysis of retinal vasculature.

In this thesis, a fully automated retinal vessel width measurement technique

is proposed. This novel method models the accurate vessel boundary delineation

problem in two-dimension into an optimal surface segmentation problem in three-

dimension. Then the optimal surface segmentation problem is transformed into find-

ing a minimum-cost closed set problem in a vertex-weighted geometric graph. The

problem is modeled differently for straight vessel and for branch point because of the

different conditions in straight vessel and in branch point. Furthermore, many of the

retinal image analysis needs the location of the optic disc and fovea as a prerequisite

information, for example, in the analysis of the relationship between vessel width and

the distance to the optic disc. Hence, a simultaneous optic disc and fovea detection

method is presented, which includes a two-step classification of three classes.

The major contributions of this thesis include: 1) developing a fully auto-

mated vessel width measurement technique for retinal blood vessels, 2) developing

a simultaneous optic disc and fovea detection method, 3) validating the methods
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using multiple datasets, and 4) applying the proposed methods in multiple retinal

vasculature analysis studies.
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CHAPTER 1
INTRODUCTION

Fundus photography is the most popular and widely accepted image modality

in computer aided diagnosis and detection for multiple eye diseases and diseases that

show signs on the human retina. An objective assessment of retinal vessel caliber

from fundus photographs provides information about the microvascular characteris-

tics, which are known to be associated with eye diseases, such as retinitis pigmentosa,

and cardiovascular diseases such as stroke, hypertension, and arteriosclerosis. How-

ever, most of the studies were carried out using manual or semi-automated methods

due to the lack of a fully automated retinal vessel evaluation method and hence in-

volved lots of painstaking manual work of identifying blood columns and measureing

vessel width. The lack of a fully automated retinal vessel delineation and quantita-

tive analysis technique restricted the possibility of large scale studies on using retinal

vessel parameters as a biomarker of multiple diseases. A fully automated and precise

quantification method for retinal vessel is hence desirable and of great importance.

1.1 Specific Aims

There are several sub-problems in the automated quantification of retinal blood

vessel. For instance, the detection of optic disc and fovea is necessary to establish a co-

ordinate system for the whole image and determine the region of interest (ROI). Vessel

segmentation must be done to find the vessels themselves. An accurate measurement

of vessel width is the most important and challenging problem in the quantitative
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analysis of retinal blood vessel.

In particular, the specific aims of the work described in this thesis are as

follows:

• Aim 1: Develop a fully automated method for simultaneous detection of the

optic disc and fovea, or two optic discs on stereo pair image and to evaluate

this method on large datasets.

• Aim 2: Develop an automated vessel width measurement method, including

measurement of vessel width at vessel segments and branching points, and to

evaluate this method by comparing the result of proposed method with human

observers’ measurements and existing formulas.

• Aim 3: Describe the parent branch-daughter branch relationship for arteriols

and venules.

1.2 Organization of the Thesis

This thesis is divided into 7 chapters. The rest of the thesis is organized as

follows:

• Chapter 2 gives an in-depth background description of this thesis, including an

introduction to eye anatomy and multiple ophthalmolgy imaging techniques,

and a discussion of the relationship between retinal vessel parameters and mul-

tiple diseases, which serves as the motivation of this thesis.

• Chapter 3 presents a simultaneous optic disc and fovea detection method based

on a machine learning technique.
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• Chapter 4 presents an accurate vessel width measurement technique on fundus

photography using a graph-based approach.

• Chapter 5 presents a vessel width measurement method designed for branching

points and the analysis of multiple retinal vessel parameters.

• Chapter 6 provides some general discussions of this thesis and proposes some

possible future works.

• Chapter 7 concludes the thesis.
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CHAPTER 2
BACKGROUND AND SIGNIFICANCE

This chapter gives an in-depth background description of the thesis. The basic

eye anatomy is given in Section 2.1. The introduction to fundus camera imaging and

other ophthalmology imaging modalities is given in Section 2.2. A discussion of the

relationship between multiple diseases and retinal vascular changes is given in Section

2.3. This serves as the motivation of the study in this thesis.

2.1 Anatomy of Eye

Figure 2.1: Illustration of eye anatomy [1].

The human eye is a complex biological device. The mechanism of how a camera

catches an image is often compared with the working of the eye, as shown in Figure
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2.2. Light entering the eye is first refracted when it passes through the cornea. It

then passes through the pupil and is further refracted by the lens. Finally, it reaches

the retina and is converted to electrical signals by photosensitive photoreceptor. The

electrical signals are transmitted to the brain along the optic nerve [10].

The light entering the eye is first refracted by the cornea. The cornea is the

transparent front part of the eye. However, the focal distance of the cornea is fixed,

which means that the cornea can only refract light with a constant angle. The lens,

on the other hand, can adjust its focal distance so that incoming light can be focused

on the retina. This is similar to the focusing of a photographic camera via movement

of its lenses. The lens is a transparent structure lying behind the iris and the pupil.

Figure 2.2: Light path of the visual system [2].

The iris is a membrane organ in the eye. It controls the diameter and size of

the pupil and hence the amount of light reaching the retina. The movement of iris is
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controlled by the iris dilator muscle. The pupil is an opening in the center of the iris.

It allows light to enter the eye and reaches the lens. The pupil appears to be black

because most of the light entering the pupil is absorbed by the pigment epithelium.

The vitreous is the transparent, colorless, gelatinous mass that fills the space

between the lens and the retina. It is also referred to as the vitreous body or vitreous

humor. The vitreous contains very few cells, no blood vessels, and 98 − 99% of its

volume is water. Unlike the fluid in the frontal part of the eye which is continuously

replenished, the gel in the vitreous is stagnant. So if blood or cytosol get into the

vitreous, they may not be reabsorbed for an extended period of time.

The fovea centralis, usually known as the fovea, is located in the center of the

macular region on the retina(as shown in Figure 2.1). The fovea is responsible for

sharp central vision and is avascular. Approximately 50% of the nerve fibers in the

optic nerve carry information from the fovea [10].

The optic disc or optic nerve head is the location where ganglion cell axons

exit the eye. It is placed 3 − 4mm to the nasal side of the fovea. The optic nerve

is a bundle of more than one million nerve fibers. The optic nerve connects the

retina to the brain. It is also the place where all retinal blood vessels originate and

converge. The retinal blood vessel is unique in that it is the only part of the human

circulation that can be directly visualised non-invasively in vivo, readily photographed

and subject to digital image analysis [11]. The vascular tree of the retina actually

consists of arterioles and venules, rather than arteries or veins. This is because the

widest part of the lumen of the retinal vessels is near the optic disk with diameters
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of about 100 µm, with neither internal elastic lamina nor a continuous muscular coat

[12].

The retina is a light sensitive tissue layer lining the inner surface of the eye.

The photosensitive cells on the retina detect light passing through the cornea and

lens. The retina is comparable to the film of a camera.

2.2 Imaging in Ophthalmology

The fundus of the eye is the interior surface of the eye, including the retina,

optic disc, macula and fovea. The fundus is the only part of the human body where

both the circulation and the nerve tissue can be inspected non-invasively. Imaging

techniques in ophthalmology has undergone large growth in the past years [13]. This

section provides a brief introduction to some of the imaging techniques. Fundus pho-

tography is introduced in Section 2.2.1. Fundus photography is the most commonly

used technique in ophthalmology imaging and is also the main image studied in this

thesis. Other imaging modalities are briefly introduced in Section 2.2.2

2.2.1 Fundus Photography

A fundus photograph is an image of the fundus taken by an ophthalmoscope,

or a fundus camera. The first images of the fundus were drawn by the Dutch oph-

thalmologiest van Trigt in 1853 (Figure 2.3) [3].

A normal human fundus photograph is shown in Figure 2.5. A normal human

fundus photograph is reddish. Three major structures are presented in a normal

human eye fundus photograph, the optic disc (or optic nerve head), the macula and
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Figure 2.3: First known image of human retina as drawn by van Trigt in 1853 [3].

blood vessels. The optic disc appears to be a bright region in the image, where all

blood vessels converge. Arteries are brighter comparing with veins. The macula is

a dark region where few blood vessels present. Medical signs, such as hemorrhages,

exudates, cotton wool spots, blood vessel abnormalities, and pigmentation can be

detected using fundus photographs.

Fundus photography is still the most cost-effective image modality clinically. It

is also commonly used in screening programs, where the photos can be analyzed later

for diagnosis and be used to monitor the progress in many diseases. In a screening

program, where thousands of fundus photographs are taken, it is impossible for the

ophthalmologists to personally exam every photo, especially in the extremely labori-
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(a) (b)

Figure 2.4: Fundus camera and fundus photograph. (a)Fundus Camera [4]. (b)A
Normal Eye Fundus Photograph.

ous work such as measuring vessel width for every vessel segment. Semi-automatic

methods have already been introduced to partially relieve the problem [14]. But it is

still not enough, especially in screening programs and some population studies where

usually at least hundreds of fundus images are involved.

2.2.2 Other Optical Imaging Modality

• Fluorescein angiography is an intravenous imaging technique for examin-

ing the circulation of the retina using the dye tracing method [5]. Though the

imaging technique is still fundus camera, it is an invasive method that involves

injection of sodium fluorescein into the systemic circulation. An angiogram is

obtained by photographing the fluorescenece emitted after illumination of the

retina with blue light at a wavelength of 490 nanometers. Fluorescein angiog-

raphy is a commonly used technique but it has a large number of side effects,
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including nausea in one fifth of patients and in come cases death from anaphy-

laxis [15].

• Ocular ultrasound is an imaging technique that uses high-frequency sound

waves that can be used instead of light to create an image of the retina and the

surrounding structures [16]. The technique is used to identify complications of

diabetic retinopathy including vitreous traction, retinal detachment and blood

beneath the retina.

• Scanning laser ophthalmoscopy (SLO) uses the technique of confocal laser

scanning microscopy for diagnostic imaging of retina or cornea of the human

eye [15]. SLO utilizes horizontal and vertical scanning mirrors to scan a specific

region of the retina and create raster images. SLO makes it possible to ensure

sharp and detailed images because of the short illumination period.

• Optical Coherence Tomography (OCT) is a powerful clinical tool for mon-

itoring retinal physiology in patients. It utilizes low coherence interferometry

to differentiate tissues within the eye and create a cross section of a living

patient’s retina in a non-invasive way. The use of relatively long wavelength

(near-infrared) light allows it to penetrate into the scattering medium (e.g.,

biological tissue). It is worth noting that OCT is not only used in ophthalmol-

ogy, it can also be employed in diverse areas, including art conservation and

interventional cardiology to help diagnose coronary artery disease [17].
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(a) (b) (c)

(d)

Figure 2.5: Example figures of multiple ophthalmologic imaging techniques. (a) Peak
phase angiogram in a patient with diabetes demonstrates areas of hyporfluorescence
in the superior macula secondary to a vascular filling defect as well as hyperfluores-
cent microaneurysms [5]. (b) Ocular ultrasound: Ultrasound image of a normal eye
with lens [6]. (c) Scanning laser ophthalmoscope image of the left eye retina (image
courtesy to Michael Judge Brislin). (d) OCT scan of a retina at 800 nm with an axial
resolution of 3 µm [7].

2.3 Retinal Vascular Changes and Related Diseases

Retinal blood vessel changes have been reported to be associated with a num-

ber of diseases. Retinal arteriolar changes and venular changes have been reported to

be associated with different diseases [18][8][19][13]. The retinal arteriolar narrowing

is mainly associated with hypertensive retinopathy. The pathophysiological changes

in retinal vessels in response to blood pressure elevation are often referred to as hy-
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pertensive retinopathy. The main vascular changes in hypertensive retinopathy is

seen clinically as generalized narrowing of the retinal arterioles [20]. Less is known

about the pathophysiological mechanisms of retinal venular caliber changes. Epi-

demiological studies have consistently shown associations of retinal venular caliber

with systemic inflammatory markers [19]. Retinal venular widening is also reported

to be associated with smoking, hyperglycemia, obesity, and dyslipidemia [8]. In a

population-based study of normal Australian children with a mean age of 12.7 years,

those in the highest quartile of blood pressure had significantly narrower mean reti-

nal arterial diameters (p < 0.0001) after adjustment for age, gender, ethnicity, height,

birth, weight, BMI and iris color [21]. Children in the highest quartile of BMI had

significantly increased venous caliber (p = 0.001) and significantly decreased arte-

riolar caliber (p = 0.01) [21, 22]. In another cross-sectional study of children aged

7 to 9 years, increased BMI was associated with increased venous caliber, but not

with decreased arterial caliber, after adjustment for age, gender, race, socioeconomic

status and birth parameters [23].

The retinal vessel width relationship at vessel branching points in fundus im-

ages is another important biomarker of retinal and systemic disease, such as periven-

tricular white matter hyperintensities, ischaemic heart disease, and hypertension

[24, 20]. The retinal arterial diameters at branching points conform to predicted

optimal values in normal subjects, but deviate significantly in men with peripheral

vascular diseases [25]. Studies also showed that the retinal branch point exponents

deviate from optimal values with advancing age [26]. Increased branching coefficient
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of retinal vessels was also reported to be associated with periventricular white matter

hyperintensities and ischaemic heart disease, and decreased branching coefficient with

deep white matter hyperintensities [24]. Compared to straight vessel segment width

as a parameter, the width ratio at branch points has the obvious advantage that it

is dimensionless, which allows the difference in magnification by the optics of the eye

across individuals, so that the ratio can be compared across subjects [13, 27].

2.3.1 Methodological Issue in Measuring Retinal Vascular Changes

A number of quantitative analysis has been made on the fundus images as an

indicator of those changes, including the retinal arteriole-venule ratio (AVR), parent

branch-daughter branch relationship, vascular bifurcation angles, vascular tortuosity,

and length-to-diameter ratios [11]. Among these parameters, parent branch-daughter

branch relationship and arterial-to-venous ratio are closely related with retinal vessel

width measurement and they are closely related with each other as well. A discussion

of previous works on those two parameters is given below.

• Parent Branch-Daughter Branch Relationship

In 1926, Murray proposed the parent branch-daughter branch relationship that

required minimum expenditure of energy by the organism in arteries and in capillaries.

Murray argues that larger vessels lower the energy expended in pumping blood, while

larger vessels also increase the overall volume of blood in the system, which will in

turn requires more metabolic support. So In order to minimize the expenditure of

energy, the parent branch and daughter branches should follow the relationship given
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in Equation 2.1.

d3 = d3
1 + d3

2, (2.1)

where d is the caliber of parent branch and d1, d2 are the calibers of two daughter

branch. In 1995, Stanton et al. followed Murray’s study on the parent branch-

daughter branch relationship in human retina on a set of 25 subjects by manually

measuring the branching vessel width of arteries [26]. However, they concluded that

the junction exponents (value of x in Equation 2.1) were 2.65±0.18 for normotensive

and 2.48±0.17 for hypertensive subjects.

On the other hand, Parr et al. proposed the arterial parent branch-daughter

branch relationship in human retina in the form of a second power polynomial re-

lationship [20], as given in Equation 2.2. The study included 40 subjects and 126

arterial branchings. All branch vessel width were manually measured. The proposed

relationship was concluded by doing a linear fitting.

Wa = (0.87w2
1 + 1.01w2

2 − 0.22w1w2 − 10.76)1/2, (2.2)

where w1, w2, and Wa are the widths of the narrower branch, the wider branch, and

the parent trunk in an arteriolar branching. This described relationship applies only

to normal vessels of young subjects. There may be different relationships for normal

vessels of old subjects and for abnormal vessels.

In 1999, Hubbard et al. proposed a similar relationship for retinal venous

branch points, as given in Equation 2.3.
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Wv = (0.72w2
1 + 0.91w2

2 + 450.05)1/2, (2.3)

where w1, w2, and Wv are the widths of the narrower branch, the wider branch, and

the parent trunk in a venular branching.

In 2003, Knudtson et al. argued that the Parr-Hubbard formulas have some

spurious variability [28]. First of all, these calculations allow contributions of a vari-

able number of vessel diameters for each eye to the overall estimate of vessel caliber,

which resulted in increasing trends between the number of vessels included in the

calculation and the magnitude of summary estimates. Secondly, the formulas include

constant terms in their equations, which in turn cause the result to be dependent

upon the units (e.g. microns, pixels) of the measurement. They therefore developed

the revised formulas for summarizing the caliber of arterioles and venules, which is

given in Equation 2.4 and 2.5.

Ŵa = 0.88 × (w2
1 + w2

2)
1/2 (2.4)

Ŵv = 0.95 × (w2
1 + w2

2)
1/2, (2.5)

where Ŵa and Ŵv is the widths of the trunk of an arteriolar branching and a venular

branching separately and w1 and w2 is the widths of the two branches.

All the studies are based on manual measurement and very limited number of

subjects and branch points. Until now, no large scale study has been done to explore

the parent branch-daughter branch relationship due to the lack of a fully automated
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retinal vessel measurement technique. Hence, no commonly accepted relationship is

developed.

• Arteriole-to-Venule Ratio

The arteriole-venule ratio (AVR) is another commonly used measurement, be-

cause it is simple to understand and is attractive to clinicians, and because correction

for refractive error is not needed [19]. Figure 2.6 shows two retinal images as examples

of low and high arteriole-venule ratio [18].

Figure 2.6: Examples of low and high arteriole-venule ratio [8].

Even though the concept of AVR is very straightforward, the calculation is

not easy. The variation among individuals of the number of branches and pattern of

branches makes it no straightforward quantitative way to express the general caliber
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of the retinal vessel [29]. Because at a bifurcation, although each branch is usually

narrower than its parent, the total cross-sectional area of the vascular bed increases

[20].

Parr et al. proposed the concept of the central retinal artery equivalent

(CRAE) in 1974 [29]. They use Equation 2.2 to calculate the width of a parent

vessel from the widths of its two branches. This procedure is done iteratively until a

single arterial branch is reached, which is called the central retinal artery equivalent

(CRAE).

Similarly, in 1999, Hubbard et al. proposed the concept of central retinal vein

equivalent (CRVE) and a parent branch-daughter branch relationship to calculate

CRVE [14]. The formula is given in Equation 2.3. Similarly, the parent branch-

daughter branch relationship equation is used to calculate the caliber of parent branch

using the calibers of two daughter branches until a single venous branch is reached.

Knudtson proposed to used the revised Parr-Hubbard equations (Equation

2.4 and Equation 2.5)to calculate CRAE and ARVE. However, only the six largest

arterioles and the six largest venules are included in the calculation. They used an

iterative procedure of pairing up the largest vessels with the smallest vessels and

repeating until they reached a single number, which is still called a central retinal

vessel equivalent.

A more recent work of Patton et al. proposed a formula using a linear regres-

sion model to incorporate the asymmetry index of the vessel branches being measured

[30]. However, they did not provide a comparison between their proposed formulas
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and the Parr-Hubbard formulas and Knudtson’s revised formulas.

The current arteriole-venule ratio measurement method has been reported to

have significant limitations. As mentioned, narrowing retinal arterioles and widening

venules has been reported to be associated with different systemic diseases. Smaller

retinal arteriolar caliber is associated with hypertension, while larger retinal venular

caliber has been associated with inflammation, smoking, hyperglycemia, obesity, and

dyslipidemia [8]. However, the current arteriole-venule ratio measurement is unable to

separate those different changes in arterioles and in venules. Furthermore, the AVR is

constructed by producing a formula that convert the AVR into a single ratio number

(CRAE/CRVE). Thus it is unable to differentiate the AVR changes across the image

at different branching levels. There are reports shown that in some conditions, such

as hypertension, it is the smaller arteries that may be most affected [29]. But the

current AVR is not able to show these differences.
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CHAPTER 3
AUTOMATED LOCALIZATION OF RETINAL LANDMARKS

3.1 Literatures

A knowledge of the location of the optic disc and fovea will benefit the fundus

image analysis in many aspects. This is important for two reasons. First, it is often

necessary to mask out the normal anatomy before finding abnormal structures. For

instance, the optic disc might be mistaken as bright lesion if it is not masked out.

Secondly, the distribution of the abnormalities is not uniformly distributed on fundus

photographs. Certain types of abnormalities occur more often in specific areas on

the retina. In the conventional study of arteriole-venule ratio, the arteriole-venule

ratio is usually measured around a circular region centered at the optic disc [28].

It is also known that hypertensive retinopathy has a larger influence on the smaller

retinal vessels, which are usually far away from the optic disc [20]. Thus a advance

knowledge of the location of the optic disc is required.

A lot of work has been reported in the optic disc or fovea detection [31] [32] [33]

[34] [35] [36] [37] [38]. Most optic disc detection methods are based on the fact that

the optic disc is the convergence point of blood vessels and it is normally the brightest

structure on a fundus image. Most fovea detection methods depend partially on the

result of the optic disc detection.

Hoover et al. proposed a method for optic disc detection based on the combi-

nation of vessel structure and pixel brightness [33]. If strong vessel converge point is
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found in the image, it is regarded as the optic disc. Otherwise the brightest region is

detected. Foracchia et al. proposed an optic disc detection method based on vessel

directions [32]. A parabolic model of the main vascular arches is established and

the model parameters are the directions associated with different locations on the

parabolic model. The point with a minimum sum of square error is reported as the

optic disc location. In Lowell et al., by matching an optic disc model using the Pear-

son correlation, an initial optic disc location is determined [35]. Then a deformable

contour model was used to trace the optic disc boundary.

Compared with the automatic detection of optic disc, less work has been done

in the field of fovea detection. Most methods use the fact that the fovea is a dark

region in the image and that it normally lies in a specific location relative to the

optic disc and the main vascular arch. In Flemming, approximate locations of the

optic disc and fovea are obtained using the elliptical form of the main vascular arch

[31]. Then the locations are refined based on the circular edge of the optic disc and

the local darkness at the fovea. Li and Chutatape also proposed a method to select

the brightest 1% pixels in a gray level image [34]. Then the pixels are clustered

and principal component analysis based on a trained system is applied to extract a

single point as the estimated location of optic disc. A fovea candidate region is then

selected based on the optic disc location and the main vascular arch shape. Within the

candidate region, the centroid of the cluster with the lowest mean intensity and pixels

number greater than 1/6 disk area is regarded as fovea location. In Sinthanayothin’s

paper, the optic disc was located as the area with the highest variation in intensity
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of adjacent pixels, while the fovea was extracted using intensity information and a

relatively distance to the optic disc [37]. Tobin et al. proposed a method to detect

the optic disc based on blood vessel features, such as density, average thickness and

orientation [38]. Then a fovea location is determined based on the location of optic

disc and a geometry model of the main blood vessel. Niemeijer et al. proposed a

method to automatically localize both the optic disc and fovea in 2008 [36]. For the

optic disc detection, a set of features are extracted from the color fundus image. A

k-nearest-neighbor classification is used to give a soft label to each pixel on the test

image. The probability image is blurred and the pixel with the highest probability

is detected as optic disc. A relative position information between the optic disc and

the fovea is used to limit the search of fovea into a certain region. For each possible

location of the optic disc, a possible location of the fovea is given. The possible

locations for the fovea is stored in a separate image and the highest probability

location is detected as the fovea location. The simultaneous detection of optic disc

and fovea proposed in this thesis is an extension of the work of Niemeijer et al.

3.2 Methodology

The algorithm for simultaneous detection of the optic disc and the fovea is an

extension of the work of Niemeijer et al. [36]. Part of the work has already been

published [39].

In order to extract the intensity information from different color channels,

the red, green and blue channels are extracted from the color fundus image (Figure
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(a) (b)

(c) (d)

Figure 3.1: RGB channels of Figure 2.5. (a)Color fundus image. (b)Red channel.
(c)Green channel. (d)Blue channel.

3.1). The green component allows the best contrast between retinal vessels and

background. The red channel is usually saturated while the blue component is very

dark and contains lots of noise. We extract features from all three channels and let

the feature selection decide which features are useful later.

As mentioned in Section 2.1, the optic disc is the convergence point of blood

vessels. The fovea center has very few blood vessels. Consequently, blood vessel
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features such as vessel width, orientation, etc. can be used as indicator of the optic

disc and fovea positions. In order to measure vessel features, a vascular segmentation

is required. We applied the vessel segmentation method proposed by Niemeijer et al.

[9]. This segmentation method is trained using a set of images in which all vasculature

has been manually segmented. A posterior probability map was produced with each

pixel’s gray value being the probability of this pixel being a vessel pixel. An example

of the probability image is shown in Figure 3.2.

The probability image is then thresholded to generate a binary vessel segmen-

tation image. The threshold is set to 110 in this study so that big blood vessels can

be maintained while small branches and noise are discarded. In the binary vessel

image, a pixel value of 255 indicates that it is a vessel pixel while 0 indicates it is a

background pixel.

The centerlines of blood vessels are extracted from this binary image through

sequential thinning approach [40]. The structuring element E and L used in sequential

thinning are shown in Equations 3.1 and 3.2. ∗ means the pixel at that position can

be either 0 or 1. The other five elements are given by rotation.

E1 =

 ∗ 1 ∗
0 1 0
0 0 0

 , E2 =

 0 ∗ ∗
0 1 0
0 0 0

 , · · · , E7 =

 ∗ 0 0
∗ 1 0
0 0 0

 (3.1)

L1 =

 0 0 0
∗ 1 ∗
1 1 1

 , L2 =

 ∗ 0 0
1 1 0
∗ 1 ∗

 , · · · , L7 =

 0 0 ∗
0 1 1
∗ 1 ∗

 (3.2)

Sequential thinning is defined as Equation 3.3. Let B(1), B(2), ..., B(n) denote the
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(a)

(b)

Figure 3.2: Vessel probability image and vessel centerline image of Figure 2.5. (a)The
vessel probability image. (b)The final binary image with centerline pixel inside.

structuring elements E and L mentioned above. X ⊖ B means erode X with element

B. X ⊖ B = p ∈ ε2: p = x + b ∈ X for every b ∈ B.

X ⊖ B(i) = (((X ⊖ B(1)) ⊖ B(2))... ⊖ B(n)) (3.3)

The centerline image are then added back to the binary image and gives a gray
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value of 100, in order to distinguish from the vessel pixels, which is 255. An example

image is shown in Figure 3.2.

(a) (b)

(c) (d)

Figure 3.3: Distance transform of Figure 2.5. (a)The binary image before erasing
noise regions. (b)The distance map of (a). It is influenced by small noises greatly.
(c)The binary image after erasing noise regions. (d)The distance map of (c). The
influence by noise regions disappears.

As mentioned, usually no blood vessel can be observed around the fovea, while

lots of vessels are around the optic disc since it is the convergence point of blood vessel.
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Therefore, a distance transform of the binary vessel segmentation image is generated

to make use of this observation (see Figure 3.3). The brightness of a pixel denotes its

distance to the nearest blood vessel pixel. So the blood vessel pixels have a brightness

0 because it has a distance 0 to blood vessel. The optic disc region normally has a

very low average brightness, because of a high blood vessel density. The four corners

and the fovea region are usually much brighter because of the absence of vessel pixels.

However, if we use the binary image directly to generate the distance image,

the distance map will be influenced by small noise, as shown in Figure 3.3 (a) and

(b). If there are small noises around the fovea, the distance image will be changed

greatly. In order to solve this problem, the vessel regions that have an area smaller

than 20 pixels are erased from the binary blood vessel image. As shown in Figure 3.3

(c) and (d).

3.2.1 Feature Extraction

For each sample point, a set of features are extracted from the pre-processed

images. A circular template is used to extract those features (see Figure 3.4). The

outer diameter R is set to 50 pixels because it is comparable to the diameters of

the optic disc and fovea. The inner diameter r of the template is designed to best

obtain the intensity contract between the center of the fovea and the peripheral. In

our study, we empirically chose the inner radius 25 pixels. Since the optic disc is the

entry point for the optic nerve, for pixels around the optic disc, all the vessel segments

should oriented to the template center. Also, despite the few numbers, the vessels
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that approach the fovea center from the top and bottom directions are expected to

be more or less parallel to the y-axis, while the vessels approaching from the left and

right should approximately be parallel with the x-axis. Based on this observation,

the template is also divided into four quadrants, in order to better capture the vessel

orientation differences in different directions.

Figure 3.4: Circular template of inner radius r and outer radius R. The template is
divided into four quadrants.

The features extracted from the pre-processed images are shown in Table 3.2.1.

Among these features, feature 1-30 is extracted from the vessel probability map.

Feature 31-42 are extracted from the red, green and blue channel. Feature 43-45 are

from the distance transform image of the binary image.

Figure 3.5 shows an simple illustration of how the vessel features are calculated

within the template. The template radius is 15 pixels. The inner template boundary

is not shown because it is not used in vessel feature extraction. Pixel 1 denotes the

template center.
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Table 3.1: Features extracted for the first k -NN classification.
feature # feature description template image

1-4 number of vessels quadrants vessel image
5-8 average vessel width quadrants vessel image
9-12 standard deviation of vessel width quadrants vessel image
13-16 average vessel orientation differ-

ence

quadrants vessel image

17-20 standard deviation of vessel ori-

entation difference

quadrants vessel image

21-24 maximum vessel width quadrants vessel image
25-28 orientation difference of max-

width vessel

quadrants vessel image

29 vessel density whole template vessel image
30 average vessel width whole template vessel image
31-36 average image intensity inner/outer template R,G,B image
37-42 standard deviation of image in-

tensity

inner/outer template R,G,B image

43-44 average distance to vessel pixel inner/outer template distance image
45 maximum distance to nearest ves-

sel pixel

inner template distance image
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Figure 3.5: Illustration of how vessel features are computed. The outer radius of the
template is 15 pixels. The inner radius is not shown because it is not used in vessel
feature extraction. Vessel pixels are shown in gray and vessel centerlines are shown
in black. Pixel 1 is the template center. Arrow a denotes the vessel orientation at
pixel 2. Arrow b denotes the direction along which the vessel width is calculated.

Under each quadrant, the number of vessels is the number of vessel pixels

under the quadrant. So the number of vessels for quadrant 1 is 27. Similarly, vessel

number for quadrant 2, 3, and 4 is 39, 41 and 0 separately.

For each centerline pixel p, the three neighbor centerline pixels in the left and

in the right are found. So a vessel centerline segment of length 7 is selected. Near

the end of the vessel, where less than three neighbors can be found at one end, only

centerline coordinates inside the vessel are used, 4 pixels for the end point. If the

total length of the centerline segment is less than 4 pixels, it is regarded as noise and
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discarded. For example, the 6 neighbors for pixel 2 are labeled red in Figure 3.5.

For this centerline segment, principal component analysis is applied to find

the dominant orientation. The orientation is regarded as the orientation of centerline

pixel p. In this example, the first principal component for the vessel segment centered

at pixel 2 is [0.707, 0.707], as shown in arrow a. The vessel angle is 45 degrees.

The vessel width at pixel p is measured along a line perpendicular to the

dominant vessel orientation. In Figure 3.5, the vessel width is measured along arrow

b. The vessel width at pixel 2 is two pixels.

After the vessel width and orientation is computed for each centerline pixel, the

width average, width standard deviation, orientation average, orientation standard

deviation and maximum vessel width can be calculated consequently.

x̄ =

∑n
i=1 xi

n
(3.4)

s =

√√√√ 1

n − 1

n∑
i=1

(x − x̄)2 (3.5)

The vessel density under the complete template is measured by dividing the

number of vessel pixels under the whole template by the area of the template. In

the example shown in Figure 3.5, the total number of vessel pixels within the whole

template is 107. The template area is πR2 = 706 pixels. So the vessel density is

107/706 = 0.15.

The average vessel width under the whole template is calculated by dividing

the number of vessel pixels by the number of centerline pixels. So in this example

it is 107 divided by 34, which is 3.4. So the average vessel width is 3.4 within this
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template.

The average and standard deviation of pixel intensities within the inner tem-

plate and outer template are extracted separately on the red, green, and blue channels.

The outer template radius R is set to 50, which is comparable to the radius of optic

disc and fovea. Hence, if the template is centered around optic disc, the average

intensity should be high while the standard deviation is supposed to be low, because

of the low dispersion of image intensity. Similarly, around fovea, the average image

intensity should be low and the standard deviation of intensity should also be low.

Especially on the green channel, where optic disc, fovea, and blood vessels all have

the best contract with the background. On the red channel, which is usually over

saturated, the overall brightness is very high, often not only for the optic disc region;

while on the blue channel, the overall brightness is usually very low, not only for the

fovea region. But we still compute all those features and let the feature selection to

decide which ones are useful. The equations for average and standard deviation is

given in equation 3.4 and 3.5.

In this study, the radius of the inner template r is set to 25 pixels, because it

gives a good intensity contract between the inner template and outer template when

the template is centered around fovea.

The average distance to the nearest vessel pixel for both inner and outer tem-

plates are extracted from the distance image. On the distance image, the distance to

the nearest vessel pixel is simply the pixel intensity. Near the optic disc, the distance

image is usually very dark because of the high vessel density, while near the fovea
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and four corners of the image, the distance image is usually very bright because of

the absence of blood vessel.

In order to build a relationship between those features from sampling points

with the true distance to optic disc and fovea, a distance variable D must be defined.

First of all, for each sample pixel, the Euclidean distance to optic disc dod and fovea

df is calculated separately. Then dependent variable D is defined as follows:

D =


df if df < R

2R − dod if dod < R
R otherwise

(3.6)

Parameter R is the radius of the outer template. R = 50 in this study. Those

pixels that are within 50 pixels to optic disc will have a d ranging from 50 pixels to

100 pixels, while those pixels that are within 50 pixels to fovea will get a d ranging

from 0 pixels to 50 pixels. Since normally the distance between the optic disc and

fovea in a fundus image is larger than 100 pixels, it is very unlikely for a pixel to fall

in both side. Pixels that neither within R to optic disc or within R pixels to fovea

will get a background value of 50 pixels. A true distance D map for Figure 3.1 looks

like Figure 3.6.

After proposing all these potentially useful features, a feature selection method

is necessary because all features are not necessarily helpful and may result in overdi-

mensionality reducing optimization quality. Also, the more features used, the slower

the system tends to be. What we need is a compact set of features that can separate

the optic disc and fovea from the background and the blood vessels to the largest

extent.

A sequential forward and backward selection method is adapted [41]. This
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Figure 3.6: A standard true distance map for Figure 3.1. (a). The background is
normalized to 127. The higher the gray value is, the higher the probability of being
within an optic disc. The lower the gray value is, the higher the probability of being
within a fovea.

algorithm employs a plus l, take away i strategy. Stating with an empty feature set,

l features with the best combined performance are selected one by one and then i

features are subtracted from the chosen feature group if by subtracting those features,

the overall performance is better. This procedure goes on until the maximum feature

number or a satisfactory performance is reached.

In this study, the maximum feature number is set to 25. A larger number

of feature will make the system very slow. The performance is measured as shown

below.

Two criterion was proposed to measure the performance of the features. Cri-
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terion one is the rate of correctness. Criterion two is the mean distance.

C1 =

{ Nod|t+Nf|t
M+N if M > 3000,N > 3000

0 otherwise
(3.7)

Where M denotes the predicted number of pixels within R pixels to optic disc

center and N denotes the predicted number of pixels within R (R = 50) pixels to

fovea center. Nod|t and Nf |t denotes the number of pixels that are really within R

pixels of the optic disc or fovea. C1 ranges from 0 to 1. C1 = 1 means that all the

pixels detected as optic disc or fovea pixels are truly optic disc or fovea pixels. C1 = 0

indicates that none of the pixels detected as optic disc/fovea pixels are really optic

disc/fovea pixel.

M > 3000,N > 3000 guarantees that the detected pixels is not too small.

50 images are used to do the feature selection. So this condition guarantees that

approximately 60 pixels are detected as optic disc and 60 pixels are detected as fovea

on each test image. Without this limitation, solely the criterion is meaningless. For

an extreme example, if only 1 points are detected from the 50 test images and it is

within 50 pixels of the optic disc, then C1 = 1, which might imply a very good result.

But in fact it is not, because it lack the ability to detect any point from most of the

images.

C2 =

{
PM

i=1 disti|od+
PN

j=1 distj|f
M+N if M > 3000,N > 3000

0 otherwise
(3.8)

Similarly, M and N denotes the predicted number of pixels within R pixels

within optic disc or fovea.
∑M

i disti|od denotes the true distance to the optic disc for

all i ∈ M.
∑N

j distj|f denotes the sum of true distance to the fovea for all j ∈ N .
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C2 ranges from 0 to +∞. C2 = 0 will imply that all p ∈ M are at the exact true

location of the optic disc and all p ∈ N are at the exact true location of the fovea.

The smaller the C2 is, the better the performance.

(a) (b)

(c) (d)

Figure 3.7: Feature selection with different criteria. (a)The performance of C1 (1-
25 selected features). (b)The performance of C1 (4-25 selected features showing in
details). (c)The performance of C2 (1-25 selected features). (d)The performance of
C2 (4-25 selected features showing in details).

The feature selection results using two different criterion are shown in Figure
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3.7. From the figures, we can see that, for both criterion, the performance fluctuates

within a small range after five selected features. So even if the performance goes

slightly better as more features are selected, the system becomes much slower. Also,

too much features might cause over-fitting problems. So the first 11 selected features

from both feature selections, which is a local maximum in C1. The test results are

shown in Figure 3.8.

From the test images, we can see that C1 performs lightly better than C2. It

deals with the images better at the edge of the images and it can better distinguish

the optic disc from the large blood vessel. So, the first 14 features from C1 are used

for final test. They are listed in Table 3.2.

In the 14 selected features, two of them are from the green channel, but no

feature from the red or blue channel is selected. This again proofs that the green

channel contains more information than the red channel and blue channel.

3.2.2 First k -NN Classification

During the training phase, the relationship is build between the selected feature

and the dependent variable D. For each training image, a rectangular grid of size

(2R)2 is centered at the optic disc and fovea separately. Inside the rectangular grid,

the image is sampled densely for every 5 pixels, Then a number of 1000 sample points

are randomly picked within the whole image. So a total number of 188,200 sample

points are used to train the system. The circular template is placed on every sample

point. The features are measured around the template and the dependent variable d
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(a)

(b)

(c)

Figure 3.8: Criterion comparison. (a)Fundus image. (b)Result image using first 11
selected features from C1. (b)Result image using first 11 selected features from C2.
C1 performs better than C2 at the image FOV boundary. For images (b) and (c),
the background is normalized to 127. The higher the gray value is, the higher the
probability of being within an optic disc. The lower the gray value is, the higher the
probability of being within a fovea.
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is calculated.

During test, the same set of features is measured for every pixel in the image.

To estimate the distance d, the k nearest neighbors in the feature space are found

and the values d of these nearest neighbors are averaged. k is chosen to be 11 in this

study.

An simple illustration of how k -NN works is shown in Figure 3.9. In this simple

example, the red circles denote optic disc pixels (D > 50). The blue stars denote fovea

pixels (D < 50).The black triangles denotes background pixels (D = 50). Green star

is the test pixel. k = 5 is used. Three red circles, one blue star and one black

triangle are found as the five nearest neighbors for the testing green star. Suppose

the D associated with the five neighbors are 75, 70, 65, 50, 45 respectively. We can

calculate the D associated with the testing green star to be 75+70+65+50+45
5

= 61.

After the first k -NN classification, a soft label is assigned to every pixel in the

image. A value larger than 50 indicates that this pixel is likely to be an optic disc

pixel. The larger the value, the higher the likelihood is. Similarly, a value smaller

than 50 indicates a possibility of being a fovea center, the lower the pixel value, the

larger the probability.

3.2.3 Second k -NN Classification

A first k -NN classification can give a good detection result for most cases. But

when diseases appears or image quality is low, detection failures might occur. Within

the detection failure cases, most of them have one structure, either optic disc or fovea,
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Figure 3.9: Illustration of k -NN regression. k=5 neighbors are found in this example.
The red circles denote optic disc pixels (D > 50). The blue stars denote fovea pixels
(D < 50). The black triangles denotes background pixels (D = 50). Green star is the
test pixel.

detection failed. The reason is usually that, there is some other areas has a higher

probability than the true location does.

A second k -NN regression is applied to further enhance the result. During the

first k -NN regression, the same set of features are applied to distinguish the optic disc

and fovea from the other structures simultaneously. But no mutual information is

included. Actually, in a fundus image, the distance between the optic disc and fovea

as while as the angle between them has some potential patterns and might be used

to enhance the detection result.

During training, for every pixel that is assigned as an optic disc/fovea pixel

in the first stage, three more features are extracted from the probability image and a

similar dependent variable d with is assigned to it.

During test, first the whole probability map is scanned and the maximum value
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(a)

(b)

Figure 3.10: Example of first k -NN classification result. Two large regions on the
image are labeled as fovea. The region on the left is falsely detected. (The background
is normalized to 127. The higher the gray value is, the higher the probability of being
within an optic disc. The lower the gray value is, the higher the probability of being
within a fovea.)



www.manaraa.com

41

and minimum value is stored as detected optic disc and fovea. Then same features as

in training are extracted and a set of k = 11 nearest neighbors in the feature space

are found. The corresponding d are averaged and assigned as a second probability

label.

When the second k -NN regression is finished, it is combined with the first

k -NN regression. For the pixels detected to be optic disc pixels, the probability is

added to the first probability map to make the gray value even higher. While for

those pixels detected to be fovea pixels, the gray value is subtracted from the first

probability image to make the gray value even lower.

3.2.4 Image Post-processing

To find the optic disc and fovea, the final probability image is blurred, with a

Gaussian kernel with σ = 15. This value is empirically determined. It dose not have

a big influence on the final result. Finally, the pixel with the highest value is selected

as the optic disc location and the pixel with the lowest value is selected as the fovea

location.

3.3 Experimental Methods

Two hundreds normal fundus images of the left eye were used to train the

system. One hundred and fifty of them were used for first k -NN training. Fifty

images were used for feature selection. Fifty images were used for the second k -NN

training.

A set of 479 fundus images with early diabetic retinopathy were used to test
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the system. Two hundreds and forty of them are left eye images. Two hundreds

and thirty nine of them are right eye images. The right eye images were manually

identified and flipped before the test and the output images were flopped back.

During the first k -NN training and feature selection, the relationship between

a set of features and the dependent variable D is built. For each training image,

a rectangular grid of size (2R)2 is centered at the optic disc and fovea separately.

Inside the rectangular grid, the image is sampled densely for every 5 pixels, which

is 882 sample points for both rectangular grids. Additionally, a number of 1,000

sample points are randomly picked within the whole image. In total, 1882 locations

are sampled on each image, which is 188,200 sample points for the whole 100 training

set.

For each sample point, the circular template is placed on it. The features are

measured within the template and dependent variable D is calculated.

Image sampling during second k -NN regression is a little different. Instead of

a densely sample plus random sample, the first probability image is thresholded at

170 and 80 separately. All pixels that have a gray value larger than 170 on the first

probability image are picked for optic disc training. Similarly, all pixels that have a

gray value smaller than 80 on the first probability image are picked for fovea training.

During test, in order to save running time, not every pixel on the image is

measured. Intuitively a down-sample, up-sample method may be more preferable.

But image down sample will change some features, of the image, such as vessel width,

and vessel number. So features are only calculated for even column pixels. The odd
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column will get a probability value through nearest neighbor interpolation.

Pixels within D pixels to the image boundary are not considered and labeled

as background.

3.4 Results

Typical result images from the first k -NN classification is shown in Figure 3.11.

The high gray value regions indicate the possible locations of the optic disc, while the

low gray value regions indicate the possible locations of the fovea. The background

is normalized to gray level 127.

Some good results will have only have one bright region and one dark region,

like in case (a), (c), (d) (g) and (h). In these cases, the estimated locations will be

accurate and clear. On the other hand, other cases might get more than one bright

regions or dark regions, like in case (b), (e) and (f). Possible reasons include the

presence of disease, low image contrast, artifacts or unbalanced illumination. Among

those cases, it is possible to finally detect correct locations. However, this is not

guaranteed. In some really bad cases as shown in (b), it is very hard to tell where

the estimated fovea is.

In order to solve this problem, the second k -NN classification is introduced.

The corresponding second k -NN results for images in Figure 3.11 is shown in Figure

3.12. The second k -NN classification includes certain mutual information between

the optic disc and the fovea. Hence, it is able to only enhance the bright/dark regions

that get support from the dark/bright regions. As shown in Figure 3.12, the image
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cases (b), (e) and (f) can be handled very nicely. The misleading dark regions are

suppressed.

The test database is constitutive of 103 left eye images and 207 right eye images

with early sign of diabetic retinopathy. The general statistic results are shown in Table

3.4.

For all the 310 images, the mean distance error is 20.31 pixels with a standard

deviation of 35.19 pixels for the optic disc. 98.1% estimated results fall in a circle

with a radius of R = 100 centered at the true location. 93.9% estimated results fall

in a circle with a radius of R = 50 pixel centered at the true location (as shown in

Figure 3.14 ).

For the fovea, the mean distance error is 32.31 pixels with a standard deviation

of 55.62 pixels. 95.8% estimated results fall in a circle with a radius of R = 100

centered at the true location. 88.1% estimated results fall in a circle with a radius of

R = 50 pixel centered at the true location.

The histograms of the distance error is shown in Figure 3.13.

The correlated distance error is shown in Figure 3.14. Most of the points are

located both within 50 pixels to the true location of the optic disc and 50 pixels to the

true location of the fovea. The distance error for the fovea is slightly more dispersive

than the optic disc. Most images only have one estimation error (if there is any),

except for three outliers.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11: Examples of typical result of first k -NN classification. Each row shows
a paired left eye and right eye result from the same person. The background is
normalized to 127. The higher the gray value is, the higher the probability of being
within an optic disc. The lower the gray value is, the higher the probability of being
within a fovea.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.12: Examples of typical result of second k -NN classification. Each row shows
a paired left eye and right eye result from the same person. The false responses has
been suppressed. The higher the gray value is, the higher the probability of being
within an optic disc. The lower the gray value is, the higher the probability of being
within a fovea.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.13: Histograms. Images (a),(b) are the general distance errors of the optic
disc and fovea. Images (c),(d) are the distance errors of the left eye. (e), (f) are the
distance errors of the right eye.
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Figure 3.14: The correlated error of the optic disc and fovea for both eye images. The
x-axis is the distance error of the optic disc. The y-axis is the corresponding distance
error of the fovea.

3.5 Discussion

Method proposed in this thesis has several improvements comparing with pre-

vious work. First of all, the first stage of the detection is a simultaneous but inde-

pendent detection of the optic disc and the fovea. The conventional way to detect

both optic disc and fovea is to first detect the optic disc using some algorithm, and

then detect the fovea depending on the result of the optic disc detection [31] [34] [37]

[38]. The fovea detection could not provide any feedback to the optic disc detection.

Our method achieves the independent but simultaneous detection of the optic disc

and fovea using the same set of features.

Secondly, we then introduce the mutual information between the two struc-

tures to enhance the result. During the enhancement, the fovea detection is not

depend on the optic disc detection. Neither does the optic disc detection depend
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on the fovea detection. One structure is just given the right to adjust the detec-

tion of the other structure by putting more weight to the place that it believes to

be the true location of the other structure. If the other structure is in an expected

location, its probability of being the true location gets even higher. If it is not in

an expected location, whether or not the algorithm accept this adjustment depends

on the comparison between the originally detected location from the first stage and

the enhanced location from the second stage. If the original detected location gives

a stronger indication (i.e. higher probability) than the enhanced location from the

second stage, the estimated location remains unchanged. On the other hand, if the

enhanced location gives a stronger indication, the estimated location will move to the

location suggested in the second stage.

Thirdly, new features are introduced for the classification. Features from the

distance transform image, such as the average distance to the nearest blood vessel

and maximum distance to the nearest blood vessel, were not used in previous work.

We also tried to extract features from the red, green and blue channels. The feature

selection result proves that the green channel contains more information than the

other two channels on a color fundus photograph.

Image preprocessing includes getting the vessel probability images. Blood ves-

sel features is a very important part of the feature set. Hence the quality of the vessel

probability image will greatly influence the optic disc and fovea detection results.

In other words, if the vessel probability image contains insufficient information, the

detection result will be influenced largely.
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Fig 3.15 shows some example vessel probability images and the optic disc and

fovea detection results. The top row shows what a normal vessel probability image

looks like and the corresponding optic disc/fovea probability image. The second row

and last row show two bad cases where insufficient information is provided by the

vessel probability image. Not surprisingly, the optic disc/fovea probability image is

completely devastated. However, these results are actually very reasonable because

the absence of vessel, i.e. low vessel density, is a very important property of the fovea

area. That is why a large region is labeled dark if the vessel image implies so.

The image quality will effect the detection result greatly. If severe diseases

or flaws appear on the image, it will influence the result. Our method is capable of

handle some of the low quality images or images with severe diseases. Fig. 3.16 shows

some cases with low quality images and their result.

But there are also cases that our method fails to detect the correct locations

on the low quality images. Some examples are shown in Fig. 3.17.
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Figure 3.15: The effect of vessel probability image on the detection result. The top
row shows what a normal vessel probability image looks like and the corresponding
optic disc/fovea probability image. The second row and last row show two bad cases
where insufficient information is provided by the vessel probability image.
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Figure 3.16: Examples of bad quality fundus images and results. The left column
shows the fundus images. The right column shows the optic disc/fovea detection
results. Though the image qualities are low, our system is able to correctly detect
the locations.
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Figure 3.17: Examples of bad quality fundus images and results. The left column
shows the fundus images. The right column shows the results. Our system failed to
detect the optic disc/fovea locations.
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Table 3.2: Selected features for the first k -NN classification.
feature # feature description template image

1 number of vessels quadrant 4 vessel image
2 average orientation difference quadrant 3 vessel image
3 average orientation difference quadrant 4 vessel image
4 standard deviation of orientation differ-

ence

quadrant 1 vessel image

5 standard deviation of orientation differ-

ence

quadrant 2 vessel image

6 standard deviation of orientation differ-

ence

quadrant 3 vessel image

7 standard deviation of orientation differ-

ence

quadrant 4 vessel image

8 orientation difference of max-width vessel quadrant 3 vessel image
9 orientation difference of max-width vessel quadrant 4 vessel image
10 vessel density whole template vessel image
11 standard deviation of image intensity inner template green channel

image
12 standard deviation of image intensity outer template green channel

image
13 average distance to nearest vessel pixel inner template distance im-

age
14 max distance to nearest vessel pixel inner template distance im-

age

Table 3.3: Features extracted for the second k -NN classification
for optic disc pixels for fovea pixels
pixel intensity pixel intensity
distance to fovea center distance to optic disc
angle to fovea center angle to optic disc
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Table 3.4: Overview of test results
left eye right eye

number of images 103 207
optic disc fovea optic disc fovea

mean of distance error 19.6640 34.5459 20.6351 31. 1866
standard deviation of distance error 31.9516 63.9703 36.7664 51.1050
correct rate 93.2% 88.4% 94.0% 87.9%
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CHAPTER 4
VESSEL WIDTH MEASUREMENT FOR STRAIGHT VESSEL

SEGMENTS

This chapter presents a comprehensive description of the vessel width measure-

ment. Literature reviews of previous work is given in Section 4.1. Method description

and experimental methods are provided in Section 4.2 and Section 4.3. Result anal-

ysis is given in Section 4.4. At last, there is a general discussion section (Section

4.5).

4.1 Literatures

Most retinal vessel segmentation work focuses on separating the blood vessels

from the background, leaving the issue of measurement to be treated separately.

Vessel detection approaches that have been published previously can be broadly

divided into region-based and edge-based approaches. Region-based segmentation

methods label each pixel as either inside or outside a blood vessel. Niemeijer et al.

proposed a pixel based retinal vessel detection method using a Gaussian derivative

filter bank and k-nearest-neighbor classification [9]. Staal et al. proposed a pixel

feature based method that additionally analyzed the vessels as elongated structures

[42].

Edge-based methods can be further classified into two categories: window-

based methods [43] and tracking-based methods [44]. Window-based methods esti-

mate a match at each pixel against the pixel’s surrounding window. The tracking
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approach exploits local image properties to trace the vessels from an initial point. A

tracking approach can better maintain the connectivity of vessel structure. Lalonde

et al. proposed a vessel tracking method by following an edge line while monitoring

the connectivity of its twin border on a vessel map computed using a Canny edge

operator [44]. Breaks in the connectivity will trigger the creation of seeds that server

as extra starting points for further tracking. Gang et al. proposed a retinal vessel

detection using second-order Gaussian filter with adaptive filter width and adaptive

threshold [43].

The above methods locate the vessels, without directly determining vessel

width. Algorithms to estimate the vessel width have been developed independently of

vessel segmentation algorithms. Al-Diri et al. proposed an algorithm for segmentation

and measurement of retinal blood vessels by growing a “Ribbon of Twins” active

contour model, the extraction of segment profiles (ESP) algorithm, which uses two

pairs of contours to capture each vessel edge [45]. The half-height full-width (HHFW)

algorithm defines the width as the distance between the points on the intensity curve

at which the function reaches half its maximum value to either side of the estimated

center point [46]. The Gregson algorithm fits a rectangle to the profile, setting the

width so that the area under the rectangle is equal to the area under the profile [47].

4.2 Methodology

Vessel width measurement on retinal image is a challenging problem. The main

challenge comes from the low local contrast between blood vessel and the background,
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as well as the large variation in image resolution and image quality. For example,

Figure 4.1 shows two enlarged retinal images. The vessel edge is barely noticeable in

the local view of the retinal image, which makes the exact vessel boundary delineation

very challenging.

(a) (b)

(c) (d)

Figure 4.1: Illustration of the difficulties in accurate vessel width measurement. When
the vessels are inspected locally, the vessel edge is very blurry and not well-defined.
(a), (b) Two zoomed-in high quality normal fundus images. The rectangular areas
show two vessel segments, which seems very clear and well-defind. (c), (d) Enlarged
rectangular areas of (a) and (b). The vessel edge appears very blurry.

To solve these problems, a graph-based method to measure the vessel width

in this thesis. Specifically, we use a graph-cuts algorithm to separate the selected
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image regions into vessels and non-vessels. This method is motivated by the fact that

the graph-based method gives a globally optimal solution, which frees the boundary

delineation from local low image contrast.

4.2.1 Vessel Centerline Extraction

An initial segmentation is needed to build the graph. We use a vesselness

map as proposed by Niemeijer et al. as our initial segmentation [9]. One example

image is shown in Figure 4.2. By thresholding the gray scale image, a binary vessel

segmentation is generated. A (constant) low threshold of 70 is chosen to better main-

tain the continuity of blood vessels. The trade-off is that small regions of noise may

not be suppressed adequately. In order to solve this problem, the vessel regions with

an area smaller than 20 pixels are erased from the thresholded image. A sequential

thinning approach is then applied to the binary vessel segmentation to find the vessel

centerlines [40].

4.2.2 Graph Construction

From this vessel centerline image, the bifurcation points and crossing points are

excluded, because these points need special treatment. A bifurcation point is defined

as a centerline pixel with three eight-connected neighbors and a crossing point is

defined as a centerline pixel with four or more eight-connected neighbors. Hence, the

vessel centerline image is scanned first to get the centerline pixels that have three or

more neighbors. By deleting the bifurcation points and crossing points, the vessel

trees are cut into vessel segments. From these vessel segments, the end points which
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(a) (b)

Figure 4.2: Example vesselness image generated by a pixel classification method
proposed by Niemeijer et al. [9]. (a) The color fundus image. The white rectangular
is enlarged and used for illustration in Figure 4.3. (b) The corresponding vesselness
image.

have only one neighbor pixel are found by scanning the image again. Starting from

one end point, we then trace the vessel segment until the other end point is reached.

In this way, we trace all the vessel segments on the image and label each of them.

For each labeled vessel segment, the growing direction for every centerline pixel

is calculated. We use n adjacent centerline pixels on both sides of the target centerline

pixel and apply principal component analysis on the resulting vessel segment [48]. The

value of n is a parameter of the image size, which is approximately 0.005 times the

first dimension of the image size. So if the first dimension of an image is 600 pixels.

The value of n would be three pixels, resulting in a total vessel segment length of seven

pixels. The minimum value of n is two. The first principal component corresponds

to the growing direction of the pixel. An end point that does not have enough

neighboring centerline pixels to define the vessel growing direction is determined to

have the direction of the nearest centerline pixel that has a definition of a vessel
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growing direction.

For the vessel growing direction, a counter-clockwise 90 degree is regarded as

the normal direction for this point. Using the centerline pixels as the base nodes,

profiles on the positive direction of the normal directions are built as one slice and

profiles on the negative direction are built as another slice, as shown in Figure 4.3.

The node step was 0.5 pixels. We used the “multi-column model” proposed by Li et

al. [49].

Along each normal profile Col(x, y) every node V (x, y, z)(z > 0) has a di-

rected arc to the node V (x, y, z−1). Along the x−direction, meaning along the same

boundary, for each node, a directed arc is constructed from V (x, y, z) ∈ Col(x, y) to

V (x + 1, y,max(0, z − ∆x)) ∈ Col(x + 1, y). Similarly, arcs from V (x, y, z) ∈ Col(x, y)

to V (x − 1, y,max(0, z − ∆x)) ∈ Col(x − 1, y, z) is constructed. ∆x is the maximum

difference allowed between two adjacent normal profiles within one boundary. Along

the y−direction, meaning between the two slices, arcs from V (x, y, z) ∈ Col(x, y) to

V (x, y + 1,max(0, z − ∆y)) ∈ Col(x, y + 1, z) and arcs from V (x, y, z) ∈ Col(x, y) to

V (x, y − 1,max(0, z − ∆y)) ∈ Col(x, y − 1, z) is constructed. ∆y is the maximum dif-

ference allowed between two corresponding normal profiles between the two bound-

aries. The base nodes are all connected [49]. A surface is regarded feasible if it satisfies

the smoothness constraint defined by ∆x and ∆y. An optimal surface is defined as the

surface with the minimum cost among all feasible surfaces defined in the 3-D volume.
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(a) (b)

(c) (d)

vessel growing direction

base nodes

base nodes

slice 1 (y=0)

slice 2 (y=1)

x

z

(e)

Figure 4.3: Illustration of how to luxate the vessel normal profiles into a graph. (a) A
small segment of vessel extracted from Figure 4.2. (b) The vessel probability image
of (a). (c) The vessel centerline image of (a). (d) The vessel growing directions are
calculated and node normal profile perpendicular to the vessel growing direction are
constructed. (e) Red normal profiles in (d) are used to build the red graph slice
and the green normal profiles in (d) are used to build the green graph slice. The
black nodes represent base nodes, corresponding to the black centerline pixels in
(d). Consequently, the red slice represents one boundary in (d) and the green slice
represents the other boundary in (d). Smoothness constraints (controlled by the arcs
between adjacent columns) are applied differently to control the boundary smoothness
within one boundary and between the two boundaries.



www.manaraa.com

63

4.2.3 Cost Function

The cost image is generated from the orientation sensitive first order derivative

of Gaussian of the green channel. The green channel of the color image usually shows

the highest contrast between the blood vessels and background [50]. In order to

find the gradient of vessels specified at different locations with different orientations,

a steerable first order derivative of Gaussian filter is used in this study [51]. The

separable first order derivative of Gaussian along the x-axis and along the y-axis are

given in equations 4.1 and 4.2. The first order derivative of Gaussian along any angle

θ is defined in equation 4.3.

G0◦

1 = − x

σ2
x

exp(− x2

2σ2
x

), (4.1)

G90◦

1 = − y

σ2
y

exp(− y2

2σ2
y

), (4.2)

Gθ
1 = cos(θ)G0◦

1 + sin(θ)G90◦

1 , (4.3)

where σx and σy are the scale of the first order derivative kernel along the x-axis

and y-axis. Because equations 4.1 and 4.2 are separable kernels, the original image

is first convolved with G0◦
1 and G90◦

1 to get the first order derivative image along the

x-axis and y-axis. Then within each normal profile, the weights of the profile nodes

are calculated according to equation 4.3. Figure 4.4 (b) shows part of a cost image.
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(a) (b)

Figure 4.4: Gradient image. (a) Part of a green channel image. (b) The corresponding
orientation sensitive gradient image.

4.2.4 Graph Search and Boundary Determination

The value of ∆x is set to one to maintain the smoothness within one boundary

and ∆y is set to two so that a difference is allowed between widths from the centerline

to the left edge and from the centerline to the right edge, in case the centerline is

not exactly at the center of the two edges. After the node-weighted directed graph

is constructed, the optimal surface is determined[49]. To determine the vessel width,

the coordinate difference between the two corresponding nodes on the optimal surface

from the two slices are calculated. To show the boundary on the image, the nearest

integer coordinate of every node on the optimal surface is calculated and shown on

the image.

4.3 Experimental Methods

The REVIEW database (http://ReviewDB.lincoln.ac.uk) is used to assess the

diameter measurement results. REVIEW is a publicly available database that con-

tains a number of retinal profiles with manual measurements from three observers.
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The four images from the High Resolution Image Set (HRIS) represent dif-

ferent severe grades of diabetic retinopathy. This set consists of four images where

90 segments containing 2368 profiles are manually marked. The images were subse-

quently down-sampled by a lateral factor of four for submission to the measurement

algorithms, so that the vessel widths are known to ±0.25 of a pixel, discounting human

error. The Central Light Reflex Image Set (CLRIS) contains 285 profiles from 21 seg-

ments from two images from two patients. These images include early atherosclerotic

changes that often includes a strong central vascular specular reflex. The Vascular

Disease Image Set (VDIS) consists of eight digitally captured images, six of which

illustrate different types of diabetic retinopathy. A set of 79 segments containing

2249 profiles are manually marked. This set of images is very noisy and suffers from

pathologies. The Kick Point Image Set (KPIS) consists of two images containing

three segments with 164 gold standard widths. By down-sampling the images to a

lower resolution, these gold standard widths have higher accuracy than expressed in

the measured images so the measurements can be assessed with sub-pixel accuracy.

To evaluate our method further, we determined the relationship between the

average vessel width (both arteries and veins) and the distance to the optic disc, in

a sample of 600 composite color fundus images, each consisting of two registered and

blended fundus images, the characteristics of which were published previously [50].

For these images, automatically determined disc location and vesselness map were

available [9, 52] .
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4.4 Results

(a) (b)

Figure 4.5: Sample images showing the result of vessel boundary detection. (a) One
image from the CLRIS database. Image size is 2160 × 1440, σ = 4. (b) A enlarged
part of image (a).

An example of the quality of the obtained vessel boundary detection is shown

in Figure 4.5. It shows a good performance on even the smallest vessels, which have

low contrast.

The proposed method were compared to the other known algorithms in Table

4.1 to Table 4.4. The first three rows are the manual result from the observers. Row

4-8 show the results of the other algorithms. The last row shows the result of proposed

method. The first column is the success rate. It is worth noticing that the definition

of success rate is different in our method and in Al-Diri’s paper. In their paper, a

point that has a meaningful measurement (e.g. a measurement that converges) was

assigned “success measurement” [45]. In contrast, we counted every centerline pixel

that had corresponding ground truth profiles as a “success measurement”, irrespective
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of our estimate of the width. Therefore all measurements with a corresponding ground

truth profile were included even if the measurements did not result in a meaningful

estimation. The columns 2-3 are the mean and standard deviation of all measurements

labeled as ’success measurement’. Column 4-5 are the signed mean and standard

deviation of the point-by-point differences.

Among the four datasets, the HRIS dataset has the highest image resolution

(3584 × 2438 pixels). The performance of the vessel width detection is comparable

to the observers. The CLRIS dataset images have a resolution of 2160 × 1440 pixels.

The mean vessel with and the point-by-point difference mean are very close to the

observers’ performance. But the point-by-point difference standard deviation is high.

The VDIS dataset has a resolution of 1360 × 1024 pixels. The mean vessel width is

0.53 pixels smaller than the ground truth. The KPIS dataset has the smallest image

resolution, 288 × 119 pixels and 170 × 92 pixels.

Table 4.1: Vessel Width Measurement Accuracy of HRIS (success rate in percentage,
mean µ and standard deviation σ in pixel)

Method Success Measurement Difference
Name Rate % µ σ µ σ

Observer 1 (O1) 100 4.12 1.25 -0.23 0.288
Observer 2 (O2) 100 4.35 1.35 0.002 0.256
Observer 3 (O3) 100 4.58 1.26 0.23 0.285
Gregson’s Algorithm 100 7.64 - 3.29 2.841
Half-height full-width (HHFW) 88.3 4.97 - 0.62 0.926
1-D Gaussian Model-fitting 99.6 3.81 - -0.54 4.137
2-D Gaussian Model-fitting 98.9 4.18 - -0.17 6.019
Extraction of Segment Profiles (ESP) 99.7 4.63 - 0.28 0.42
Proposed Method 100 4.56 1.30 0.21 0.567
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Table 4.2: Vessel Width Measurement Accuracy of CLRIS (success rate in percentage,
mean µ and standard deviation σ in pixel)

Method Success Measurement Difference
Name Rate % µ σ µ σ

Observer 1 (O1) 100 13.19 4.01 -0.61 0.566
Observer 2 (O2) 100 13.69 4.22 -0.11 0.698
Observer 3 (O3) 100 14.52 4.26 0.72 0.566
Gregson’s Algorithm 100 12.8 - -1.0 2.841
Half-height full-width (HHFW) 0 - - - -
1-D Gaussian Model-fitting 98.6 6.3 - -7.5 4.137
2-D Gaussian Model-fitting 26.7 7.0 - -6.8 6.019
Extraction of Segment Profiles (ESP) 93.0 15.7 - -1.90 1.469
Proposed Method 94.1 14.05 4.47 0.08 1.78

Our testing indicates that fundus images with a higher resolution can be mea-

sured more accurately with a larger σ. The final choice of σ is σ = 7 for HRIS dataset,

σ = 4 for CLRIS and VDIS, σ = 1 for KPIS.

Figure 4.6 shows the correlation of predicted vessel width and the mean of the

observers’ measurement for HRIS. The regression line shows the prediction tends to

give a smaller measurement for vessels with fine vessels while a larger measurement

for large vessels, compared to the observers’ measurements.

4.4.1 Relationship between Vessel Width and Distance to Disc

The relationship between vessel width and distance from the optic disc center

is shown in Figure 4.7. A total of 2,936,749 centerline pixels were extracted from the

600 images. If we do not consider the pixels near the center of optic disc, where the

blood vessels show a very complicated structure, the average vessel width shows a
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Table 4.3: Vessel Width Measurement Accuracy of VDIS (success rate in percentage,
mean µ and standard deviation σ in pixel)

Method Success Measurement Difference
Name Rate % µ σ µ σ

Observer 1 (O1) 100 8.50 2.54 -0.35 0.543
Observer 2 (O2) 100 8.91 2.69 0.06 0.621
Observer 3 (O3) 100 9.15 2.67 0.30 0.669
Gregson’s Algorithm 100 10.07 - 1.22 1.494
Half-height full-width (HHFW) 78.4 7.94 - -0.91 0.879
1-D Gaussian Model-fitting 99.9 5.78 - -3.07 2.110
2-D Gaussian Model-fitting 77.2 6.59 - -2.26 1.328
Extraction of Segment Profiles (ESP) 99.6 8.80 - -0.05 0.766
Proposed Method 96.0 8.35 3.00 -0.53 1.43

monotonic decrease from a distance of 20 pixels to 450 pixels, with a sudden slope

change at a distance of 300 pixels to the optic disc. For vessels near the optic disc

border, the average vessel width is about 5.0 pixels (approximately 75 microns) while

the vessels that have a distance of 450 pixels to the optic disc have an average vessel

width of 3.5 pixels (approximately 52.5 microns).

4.5 Discussion

We introduced a novel method to find the retinal blood vessel boundaries

using a graph-based approach. The results of our evaluation show that the blood

vessel boundaries are accurate, and our method outperforms the current state-of-the-

art algorithm on two datasets of standard retinal image resolution, while it under-

performs on lower resolution retinal images [45], as further discussed in Section 4.5.1.

Our method allows us to find the retinal vessel boundaries of even small vessels on

standard posterior pole images as used in diabetic retinopathy screening programs
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Table 4.4: Vessel Width Measurement Accuracy of KPIS (success rate in percentage,
mean µ and standard deviation σ in pixel)

Method Success Measurement Difference
Name Rate % µ σ µ σ

Observer 1 (O1) 100 7.97 0.47 0.45 0.234
Observer 2 (O2) 100 7.60 0.42 0.08 0.213
Observer 3 (O3) 100 7.00 0.52 -0.52 0.233
Gregson’s Algorithm 100 7.29 - -0.23 0.602
Half-height full-width (HHFW) 96.3 6.47 - -1.05 0.389
1-D Gaussian Model-fitting 100 4.95 - -2.57 0.399
2-D Gaussian Model-fitting 100 5.87 - -1.65 0.337
Extraction of Segment Profiles (ESP) 100 6.56 - -0.96 0.328
Proposed Method 99.4 6.38 0.59 -1.14 0.67

around the world [53]. Though the performance on the HRIS and CLRIS was close

to the human experts reference standard, it tends to be biased towards showing a

smaller measurement, for smaller vessels. The most likely explanation is that the

vessel width measurement is done with a fixed scale parameter σ, while the optimal

measurement of vessels in different scales need different scale parameters. A multi-

scale cost function is under study to solve this problem.

Alternatively, vessel width can be measured directly from the vesselness map.

In a preliminary experiment, we thresholded the vesselness image, generating a binary

vessel segmentation. A fixed threshold of 190 was used. Width were then measured

on this binary vessel map, resulting, on the HRIS dataset, in average vessel width of

6.5 pixels, with a standard deviation of 32.52 pixels. Therefore, the vesselness map

itself gave a poor estimation of the mean of vessel width, with a standard deviation

about 30 times higher than other methods, which makes this approach unfeasible.
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Figure 4.6: Correlation of predicted vessel width and the mean of the observers’
measurements for HRIS. Each point represent one profile. The red line is the y = x
line. The black line is the regression line (y = 0.87x + 1.56).

4.5.1 Width Measurement on Images of Different Resolution

The proposed method showed a consistently underestimated vessels in (com-

paring with RS) low resolution images, especially for the KPIS dataset, where the

point-by-point difference is -1.14 pixels. But we also noticed that all other algorithms

in Table 4.4 also underestimated the width. Figure 4.8 illustrates the RS and the

algorithmic estimates on vessel segments from a high resolution image and a low res-

olution image. This is a cross-sectional view of vessel intensity with regard to the

distance to the centerline. The black line is the average intensity of all normal profile
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Figure 4.7: Visualization of the relationship between vessel width and distance to
optic disc. The black circle marks a 400 pixels to the optic disc center. The vessel
width analysis starts from the optic disc center and ends at a distance of 450 pixels
(the x-axis). The y-axis shows the vessel width in pixels. The green line is the average
vessel width. The black lines are the 95% confidence interval lines. Image resolution
is about 800 × 700 pixels. Scale parameter σ = 4 pixels was used.

nodes with the same distance to the centerline in the vessel segments. The red star is

the average vessel width across the whole vessel segment marked by observers. The

green star is the average vessel width across the whole vessel segment measured by

proposed method. The HRIS image has a resolution of 3584 × 2438 pixels. The vessel

segment has a mean vessel width of about 26 pixels and the edge crosses about ten

pixels. The KPIS image has a resolution of 288 × 119 pixels. The vessel segment
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has a mean vessel width of about seven pixels and the edge crosses about three pix-

els. This figure suggests the underlying standards for width measurement of vessels

in different scales are different. On the HRIS vessel segment, Both the RS and the

proposed method found the location with the maximum gradient as the vessel edge.

However, on the KPIS vessel segment, the RS and the proposed method give differ-

ent measurements. The observers on average give a larger measurement on those low

resolution vessels.

4.5.2 Vessel Width and Distance to Optic Disc

Our results show that the relationship between vessel width with distance and

the optic disc center is inverse and monotonous. Using this method, we were able

to reliably determine the relationship between the average retinal vessel diameter

and the distance from the optic disc from 600 patients with diabetes. Except for the

vessel pixels near the center of the optic disc (about 20 pixels), the blood vessel width

shows a monotonic decrease considering the distance from the optic disc to the center.

This is most likely caused by branching - if we assume the blood vessel volume to be

unchanged. If the number of blood vessels is kept constant, the higher the branch

frequency with increasing distance to the optic disc, the larger the slope of the width

decrease. At a distance of around 300 pixels, there is a slight slope change in average

vessel width, most likely caused by the fact that this is where the image centered on

the optic disc ends and transitions to the fovea centered image that is registered to

it in our dataset.
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Figure 4.8: Vessel width measurement on vessel segments with different resolutions.
(a) One test vessel segment from HRIS. The length of the vessel segment is 173
pixels. (b) One Test vessel segment from KPIS. The length of the vessel segment is
226 pixels. (c) The vessel width measurement result of (a). If the detected edge is not
at an integer location, the nearest integer coordinate is shown. (d) The vessel width
measurement result of (b). If the detected edge is not at an integer location, the
nearest integer coordinate is shown. (e) The cross-sectional view of vessel intensity
with regard to the distance to the centerline for (a). The black curve is the average
of 173 normal profiles in the vessel segment. Intensities at non-integer locations are
linearly interpolated. The red star is the average vessel width across the whole vessel
segment marked by observers. The green star is the average vessel width across
the whole vessel segment measured by proposed method. The two boundaries are
flipped and shown in one figure. (f) The cross-sectional view of vessel intensity with
regard to the distance to the centerline for (b). The black curve is the average of 226
normal profiles in the vessel segment. Intensities at non-integer locations are linearly
interpolated. The red star is the average vessel width across the whole vessel segment
marked by observers. The green star is the average vessel width across the whole
vessel segment measured by proposed method. The two boundaries are flipped and
shown in one figure.
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Though our method has been tested on retinal images only, it may be equally

effective on other two-dimensional blood vessel projections such as cardiac and brain

angiograms.

4.5.3 Computational Performance

The proposed method has a high computational performance. For a retinal

image of size 2160 × 1440 pixels, vesselness map creation takes about 110 seconds, and

this is an operation O(n), where n is the number of pixels. The image skeletonization

and small region removal takes about 120 seconds, and this is also an operation O(n).

The total number of centerline pixels is around 20000 pixels (or 0.0064n) and the total

number of vessel segments is 160. Consequently the average length of the graph is

around 125 pixels. The average size of the graph would be slice number × height of

graph × length of graph, which is 45000 (or 0.0145n) in this case. It takes around

9 seconds to build all the graphs in the image. The method we used to solve the

max-flow problem is a pseudoflow algorithm. The running time is O(n3) [54]. It

takes about 41 seconds to solve all the graphs in the example image.

4.5.4 Limitations

Our approach has some limitations. It relies largely on the initial segmentation,

the vesselness image. False positives or disconnected vessels may result in incorrect

vessel boundary detection and vessel diameter measurements. A low threshold value

and spur pruning is one possible way to reduce the problem. But the trade-off is the

loss of some fine vessel information.
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The crossing points and branching points are currently not treated separately,

because the vessel growing direction, and consequently the vessel normal direction,

at those points are not well defined. This does not have a significant influence on the

vessel diameter measurements. However, the generation of the continuous vessel tree

will require the vessels be connected at the crossing and branching points. A possible

method to solve the direction problem at the crossing points and branching points is

the distance transform of the vessel centerline image. For the crossing points, branch-

ing points and centerline pixels near them, the direction with the maximum gradient

can be considered as the normal profile direction. Another solution is detecting and

dealing with the crossing and branching points explicitly.
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CHAPTER 5
VESSEL WIDTH MEASUREMENT AT BRANCHING POINTS

5.1 Literatures

Over two hundred published studies have explored the field of retinal vascula-

ture structure detection and vessel width measurements. However, only a few of them

treat branching points specifically. There are two steps in vessel width measurement

at branching points: detection of the branching points, and vessel width measurement

at branching points.

Most of the retinal branching points detection methods target at using the

bifurcations as a landmark for further image analysis [55, 56, 57, 58, 59], such as

retinal image registration. Shen et al. in 2001, proposed a real-time landmark extrac-

tion method from fundus images. This model-based method detects branching points

as a fragment of the vasculature that consist of two relatively straight anti-parallel

edges with either and intensity peak or an intensity valley in between. Tsai et al.

further refined this method in 2004, in which the dtected branching point is used as

the initial estimated branching point. Then an exclusion region is provided around

the estimated branching point and the location is further refined within the exclusion

region. Finally, in 2008, Bhuiyan et al. proposed a method to detect vascular bifurca-

tions and crossovers based on the vessel geometrical features. A binary vessel image is

first segmented from the color fundus image and morphological thinning operation is

applied to find the vessel centerline. Then rotational invariant 3 × 3 masks are used
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to detect potential bifurcations and crossover points. At last, the geometrical and

topological properties are used to refine the result. A detection accuracy of 95.82%

was reported. Quelhas et al. proposed a method to detect branching points by using

the bi-level thresholding [58].

Compared with vessel branchpoint detection, fewer studies have addressed

vessel branching width measurement. In most retinal branching studies, the vessel

width is measured using manual ([20, 14, 26, 28]) or semi-automatic methods ([25,

24, 30]). In a study on the relationship of peripheral vascular disease and arteriolar

bifurcation diameter, Chapman et al. proposed a semi-automatic method to measure

the vessel width for arterioles [25]. This method needs human expet operators to draw

lines perpendicular to arteriole and then an automatic method is used to determine

the points of maximum intensity variation based on the cross-sectional profiles [60].

This method was not specific for retinal vascular branchings. Doubal et al. proposed

a semi-automatic method that can track down each sub-branch if the branching center

is identified by a trained grader. Then the cross-sectional profiles can be obtained

and a Gaussian curve is fitted to determine the width [24]. Each profile needs manual

inspection after the fitting. Patton et al. used a similar semi-automatic method to

calculate the branching vessel width [30]. The human operator manually identifies the

arteriolar and venular branching points and draw a line perpendicular to the vessel.

Four other intensity profiles can be automatically generated from the given profile.

Each profile can be rejected or accepted by the operator. Then a Gaussian fitting is

used to identify the vessel width.
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To our knowledge, no fully automatic method has been developed to specifi-

cally deal with the vessel width measurement problem at branching points on fundus

image.

5.2 Methodology

We have previously published a graph based method to measure the vessel

width for straight vessel segments [61]. The vessel centerline image is used to obtain

the based-nodes for the graph. Then, a two-slice three-dimensional graph is luxated

for each vessel segment. The graph columns are built perpendicular to the vessel grow-

ing directions. The perpendicular direction is calculated using principal component

analysis (PCA). A smoothness constraint between the two slices is applied. Thus the

simultaneous two-dimensional boundary segmentation problem is transformed into a

three-dimensional surface segmentation problem. It is further converted to a mini-

mum closed set problem in a node-weighted graph. By solving the minimum closed

set problem, the two boundaries of blood vessels can be determined and the vessel

width can be measured. The traditional graph constructs graph column perpendicu-

lar to the vessel growing direction and the perpendicular direction is calculated using

PCA. This method is referred to as PCA method for the rest of the paper.

The traditional graph construction method at straight vessel width measure-

ment could not be extended to branching point vessel width measurement, as ex-

plained in Figure 5.2. First, the graph columns will intersect each other as the graph

columns approaches the branching center, resulting in multiple vessel width measure-
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ment at the same point. Second, the graph columns might run into adjoining vessel

branches, resulting in meaningless measurements of vessel width inside the vessel seg-

ment. In order to address these problems, a different graph construction method is

needed. We propose a electric field theory motivated graph construction method to

solve this problem. Similar to the PCA method, the electric field theory motivated

graph construction method is referred to as ELF method for short.

The remainder of the method description is organized as follows. The image

pre-processing and bifurcation detection is explained in Section 5.2.1. The graph

construction that specifically deal with the branching problem is discussed in Section

5.2.2. Cost function design is described in Section 5.2.3. Graph search and boundary

determination is briefly discussed in Section 5.2.4. Finally, the vessel width mea-

surement at straight vessel segments and at branching points are combined and a

smooth and consistent vessel width measurement is given for the whole vessel tree.

The method is described in Section 5.2.5. The experimental methods are given in

Section 5.3.

5.2.1 Pre-processing and Bifurcation Detection

The goal of pre-processing is to obtain a vessel centerline image as the initial

segmentation. We start with the vesselness map as proposed by Niemeijer et al., and

as shown in Figure 5.1 (b). The vesselness map is a gray scale image with each pixel

assigned the likelihood of being in a blood vessel. The higher the intensity, the higher

the likelihood. By thresholding the gray scale image, a binary vessel segmentation
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image is generated. A constant low threshold of 70 is chosen to better maintain the

continuity of blood vessels. The trade-off is that small regions of noise may not be

suppressed adequately. So the vessel regions with an area smaller than 20 pixels are

erased from the binary vessel image. A sequential thinning approach is then applied

to the binary vessel segmentation image to find the vessel centerline [40].

The branching points are detected on the vessel centerline image using a series

of 3×3 kernels [40]. The kernels are given in Equation 5.1.

k1 =

 1 0 1
0 1 0
0 0 1

 , k2 =

 1 0 1
0 1 0
0 1 0

 , · · · , k16 =

 0 0 1
0 1 0
1 0 1

 (5.1)

These kernels can effectively detect branching points on the binary vessel cen-

terline image. However, not all detected branching points are true vessel branchings,

as shown in Figure 5.1 (c). False branches can result from abrupt vessel width changes,

vessel direction changes, or from noise. Moreover, the vessel crossings are often de-

tected as two adjacent branchings on the vessel centerline image due to sequential

thinning. Hence, a spur pruning and crossing point exclusion step is required.

Starting from a detected branching point, all the three sub-branches are traced.

If another branching point is reached within certain distance, the two branching points

are regarded as a single crossing point and excluded from further study. On the other

hand, if an end point is reached within certain distance, the traced sub-branch is

regarded as a spur and removed from the centerline image.
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(a) (b)

(c) (d)

Figure 5.1: Spur pruning and crossing point exclusion on vessel centerline image. (a)
An enlarged part of a color fundus image. (b) The corresponding vesselness map. (c)
The corresponding vessel centerline image, with detected branching points shown in
gray. Spurs are presented due to abrupt vessel direction changes. A crossing point is
split into two branching points. (d) The corresponding vessel centerline image after
spur pruning and crossing point exclusion.

5.2.2 Graph-Based Vessel Boundary Segmentation

We apply an electric field theory motivated graph construction method to build

the graph at branching points. This graph construction method was first proposed

by Yin et al. in 2009 [62]. The method is inspired by the non-intersecting property

of electric lines of force. Recall the Coulomb’s law:

Ei =
1

4πε0

Q

r2
r̂, (5.2)
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where Ei is the electric field at point i, Q is the charge of point i, r is the distance

from the point i to the evaluation point j, r̂ is the unit vector pointing from the point

i to the evaluation point j, and ε0 is the vacuum permittivity. The total electric field

E at point j is the sum of Ei:

E =
∑

Ei, (5.3)

the electric field has the same direction as the electric line of force (ELF).

When multiple source points exist in an electric field, the electric line of

force exhibits the non-intersecting property. If we change r2 to rn(n > 0), the non-

intersection property still holds. The difference is that the vertices with larger dis-

tances will be penalized in ELF computing. A value of n = 4 is used to decrease the

effect from pixels with a larger distance and hence increase the robustness of local

ELF computation.

In the problem of graph construction at branching points, we assume each

vessel centerline pixel is a positive unit charge. The electric line of force is calculated

and the graph is constructed along the electric line of force, as illustrated in Figure

5.2 (b).

If we consider the branching to be isolated from the vessel tree, the graph

given above is good enough to give a reliable measurement. However, if a consistent

vessel width measurement is desired for the whole vessel tree, problems will arise at

the transition from the graph built for a branching point to the graph built for the

adjoining straight vessels, as shown in Figure 5.3 (a). The electric line of force points
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(a) (b)

Figure 5.2: Illustration of problems in applying traditional graph construction method
to branching points and introduction to electric field theory based graph construction
method. (a) A figure to illustrate possible problems in applying traditional graph
construction method to branching point situation. The problems include possible
graph column intersection and graph columns running into another vessel branch.
(b) Introduction to electric field theory based graph construction method. Its most
attractive is the non-intersecting property of electric field lines.

outside at the end of each branch. When the two kinds of graph are connected, the

graph columns from different methods will intersect.

We propose two strategies to improve the electric field theory based graph

construction method, as illustrated in Figure 5.3. First, in order to pull the electric

lines of force towards the normal direction at the end of each branch, extra positive

charges and negative charges are added in the electric field. Positive charges with

extremely large values are positioned at the infinite extension of each branch. This

is used to generate a parallel force along the vessel growing direction that can push

the graph columns toward the perpendicular direction. A distance of 10,000 pixel is
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used to simulate the infinite distance and the charge value was chosen to be 100,000

unit charges. The choice of the distance value and charge value are not sensitive

and do not have a large difference as long as they are big enough to be considered

as “infinity” in this case. In order to further pull the graph columns towards the

normal direction, three negative charges are positioned in the middle points of three

branches. The value of the negative charges are also not sensitive as long as they are

comparable to the value of adjacent positive charges. We chose the value to be five

in our case.

Second, a combined graph construction method is introduced at the transition

location. Six centerline pixels at the transition location are used to build the com-

bined graph. First of all, the location of graph nodes are calculated using both the

PCA method and the ELF method, given by (xpca|i, ypca|i) and (xelf |i, yelf |i), where

i = 0, 1, ..., 5 is the distance from the graph column to the branching center. Then

the node locations in the combined graph is calculated using a weighted linear inter-

polation of (xpca|i, ypca|i) and (xelf |i, yelf |i):

{
xi = 0.2ixpca|i + (1 − 0.2i)xelf |i
yi = 0.2iypca|i + (1 − 0.2i)yelf |i

, (5.4)

where i = 0, 1, ..., 5.

5.2.3 Cost Function

The cost function is generated from convolution of the image’s green channel

with an oriented first order derivative of Gaussian l. The green channel has been
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(a) (b)

Figure 5.3: Improvement of the electric field theory based graph construction method.
For illustration purposes, not all graph columns are shown in the figure. (a) Problems
encountered when combining the traditional graph and electric field theory based
graph. The graph columns intersect each other because the graph columns from
the electric field theory based method point outside rather than the normal direction
when approaching the end of sub-branches, as shown in dashed red lines. (b) Improved
combined graph. Two strategies are introduced to improve the construction of the
combined graph.

reported to show the highest contrast between the blood vessels and background [50].

A steerable first order derivative of Gaussian filter is used to implement the kernel

[51]. The steerable filter is able to find the gradient along different angles at different

locations. The separable first order derivative of Gaussian along the x-axis and along

the y-axis are given by G0◦
1 and G90◦

1 . The first order derivative of Gaussian along

any ngle θ is defined in Equation 5.5.

Gθ
1 = cos(θ)G0◦

1 + sin(θ)G90◦

1 , (5.5)
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where σx and σy are the scale of the first order derivative kernel along the x-axis

and y-axis. Because equations 4.1 and 4.2 are separable kernels, the original image

is first convolved with G0◦
1 and G90◦

1 to get the first order derivative image along

the x-axis and y-axis. Then within each normal profile, the weights of the profile

nodes are calculated according to equation 4.3. In our implementation, the gradient

is computed along the graph column direction, i.e., the direction of the electric lines

of force at each graph node location.

5.2.4 Graph Search and Boundary Determination

In order to keep the vessel boundaries smooth, the branching unit is con-

structed as three independent single slice graphs. Intra-column smoothness con-

straints are set to maintain the smoothness within the slice. After the graphs are

built, the optimal segmentation is found and the vessel boundary is determined as

described by Li et al. [49].

Once the three boundaries are determined, the vessel width can be measured

as the Euclidean distance between the graph nodes on the optimal segmentation from

the same centerline pixel, as illustrated in Figure 5.4.

5.2.5 Graph Search for the Whole Vessel Tree

Different graph construction methods are used for straight vessels and for

branching points and the graphs are solved independently. In order to keep the

consistency of the vessel width measurement result, the two methods need to be

combined.
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Figure 5.4: Illustration of graph construction, cost function design, and vessel width
measurement at branching point. Three graphs are built for the three boundaries
separately, as shown in color green, blue, and purple. The black dots denote the end
of straight vessel segment and start of branching vessel segment. Low cost is given
to those nodes to fix the ends of the boundaries at branching point. After the three
boundaries are determined, the vessel width is measured as the Euclidean distance
between the corresponding nodes from the same centerline pixel.

Starting from the vessel centerline image, branching points are detected and

all sub-branches are traced for certain length, as described in Section 5.2.1. Then, the

branching points and sub-branches are excluded from the vessel centerline image and

leave the straight vessels as separate vessel segments. The vessel widths of straight

vessel segments are measured using the method described in an earlier paper [61].

After that, for each branching point, if adjacent straight vessels are found, then

the start node of the graph is forced to be the same as the node on the optimal

segmentation from the straight vessel width measurement result. This is accomplished

by giving low cost to the node that is force to be on the optimal segmentation. If no
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adjacent straight vessels are found, then no restriction is placed on the start node.

By doing this, a consistent vessel width measurement is given for the whole vessel

tree.

5.3 Experimental Methods

A set of 100 artery branchings and 100 vein branchings were selected from 50

fundus images from 50 normal subjects were used to assess the vessel width measure-

ment performance. The image resolution is 2196 × 1958 pixels, and stored as DICOM

format. For each fundus image, two artery branchings and two vein branchings were

selected to evaluate the algorithm. The two observers are denoted as E1 and E2 re-

spectively. For each branching, at least three measurement profiles were given to each

of the three branches from each observer. Each measurement profile contains seven

outputs: image name, image index, branch index, x1, y1, x2, and y2. The branch cen-

ter is defined as (xk, yk) = ( 1
2n

∑n
i=1 (x1i + x2i),

1
2n

∑n
i=1 (y1i + y2i)) and the width of

the branch is defined as wk = 1
n

∑n
i=1

√
(x1i − x2i)2 + (y1i − y2i)2, where i = 1, ..., n

is the number of measurement at the given branch and k = 1, 2 denotes the two

observers. Figure 5.5 is given to better illustrate the relationship.

The parent branch-daughter branch relationship was explored on a dataset of

544 independent subjects from the Tromsø study in Norway. The Tromsø study is

a population-based cohort from a single village in Norway ages 55-85 that has been

studied and was retinally images during 2003-2006. The de-identified images and

linked clinical parameters was given in DICOM format.



www.manaraa.com

90

Figure 5.5: Illustration of the ground truth generation. Suppose the red, green, and
blue lines are vessel width manually marked for branch 1 by one observer. The vessel
width for branch 1 is calculated as the average of the three width profiles. The branch
center for branch 1 is calculated as the average of the three width profile center.

The vessel segmentation images for each image was created and the vessel

width was measured and superimposed on the original color fundus image. A human

expert was invited to locate the parent branch center for each valid branch and label it

as an artery or a vein. This was done on a tablet-based color fundus image evaluation

system ([63]) and the interface is shown in Figure 5.6.

5.4 Results

Typical vessel width measurements are shown in Figure 5.7. Red lines denote

the vessel width measurement for branching points. Black lines denote the vessel

width measurement for straight vessels.

We compared the performance of our algorithm with the performance of the

two human observers. As mentioned, the branch center is defined as (xk, yk), where
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Figure 5.6: Illustration of the tablet-based image evaluation system. The human
observer is able to locate the center of parent branch center and label it as an artery
or a vein.

k = 1, 2 are the two observers. Similarly, we determine the branch center calculated

in our algorithm as (xalg, yalg) = ( 1
2n

∑n
i=1 (x1i + x2i),

1
2n

∑n
i=1 (y1i + y2i)), where n is

the number of measurement profiles given by the algorithm. When the performance is

compared, (x1, y1), (x2, y2), (xalg, yalg) are matched. A match is considered successful

if the Euclidean distance between the two center is less than 10 pixels. The match

could fail when (x, y) is too far from either (x1, y1) or (x2, y2), or (x1, y1) and (x2, y2)

are too far from each other. The performance for a branching is considered as valid

if the matches of all the three branches are successful. Among the 200 branchings,for

three of them the algorithm failed to match all the branches, so the success rate is

98.5%. The vessel width is compared for the valid branchings. The average of w1

and w2 is considered as the ground truth for comparison and is denoted as AVE in
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(a) (b)

Figure 5.7: Typical vessel width measurement images. Red lines denote the vessel
width measurement for branching points. Black lines denote the vessel width mea-
surement for straight vessels.

Table 5.2. The result of the comparison is given in Table 5.1. branch1, branch2 and

branch3 are the three branches.

Table 5.1: Comparison of the performances between human experts and presented
method (Vessel widths are in pixels. E1 and E2 denote the two human experts. Alg
denotes the presented method. µ and σ are the mean and standard deviation of vessel
width measurements).

branch1 branch2 branch3

µ σ µ σ µ σ
E1 18.24 4.82 14.57 4.53 13.37 3.66
E2 19.40 4.94 16.01 4.34 14.39 3.52
Alg 18.41 4.81 14.75 4.20 13.78 3.69

The signed error and unsigned error are given in Table 5.2. branch1, branch2

and branch3 are the three branches.
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Table 5.2: Comparison of the performance between human experts and presented
method (Signed error and unsigned error are in pixels. E1 and E2 denote the two
human experts. Alg denotes the presented method. Ave denotes the average mea-
surements of the two human experts. µ and σ are the mean and standard deviation
of errors).

E1 vs. E2 Alg vs. Ave
branch1 branch2 branch3 branch1 branch2 branch3

Signed Error
µ -1.160 -1.440 -1.026 -0.408 -0.532 -0.102
σ 1.557 1.882 -1.932 -1.670 -1.895 -2.090

Unsigned Error
µ 1.544 1.884 1.695 1.253 1.480 1.534
σ 1.176 1.435 1.378 1.174 1.294 1.419

The scatter plots are given in Figure 5.8 and arteries and veins were plotted

separately. Pearson’s correlation was given to quantify how good the performances

were linearly correlated. The correlation was lower for artery branchings between

both the algorithm and ground truth, and between two observers, as shown in Figure

5.8 (a) and (b). The Bland-Altman plots are given in Figure 5.9.

5.4.1 Parent Branch-Daughter Branch Relationship

The measured branch was matched with the annotation from human experts

and only the matched branch was involved in further analysis. A number of 4607

branch points were matched, among which 1703 were arteries and 2904 were veins.

First, a linear regression was done to show whether parent branch-daughter branch

relationship conform to Murray’s. Then a comparison between different models was

given.

Murray’s power relationship is based on the hypothesis that calibers of daugh-

ter branches are smaller than the caliber of parent branch. Hence, branches that has
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(a) (b)

(c) (d)

Figure 5.8: Vessel width measurement scatter plots. (a) The scatter plot of vessel
width measured by automatic algorithm and the average of vessel width given by
observer 1 and observer 2 for artery branchings. (b) The scatter plot of vessel width
measurement performed by observer 1 and observer 2 for artery branchings. (c) The
scatter plot of vessel width measured by automatic algorithm and the average of
vessel width given by observer 1 and observer 2 for vein branchings. (d) The scatter
plot of vessel width measurement performed by observer 1 and observer 2 for vein
branchings.
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(a) (b)

(c) (d)

Figure 5.9: Bland-Altman plots. (a) Bland-Altman plot of proposed method and
observer 1. (b) Bland-Altman plot of proposed method and observer 2. (c) Bland-
Altman plot of proposed method and the average of observer 1 and observer 2. (d)
Bland-Altman plot of observer 1 and observer 2.
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a larger daughter branch comparing with parent branch was excluded in this analysis.

The result is shown in Figure 5.10. The total number of artery branch is 1145 and

the number for vein is 2527. Figure 5.10 (a) shows that the arterial parent branch-

daughter branch relationship conforms to the Murray’s law. The best fitting for vein

was found at x = 2.3, which deviates from the Murray’s law. The Bland-Altman plot

is given in Figure 5.11.

(a) (b)

Figure 5.10: Scatter plot of the measured vessel width and predicted vessel width by
applying the model dx = dx

1 + dx
2 , where d is the caliber of parent branch and d1, d2

are the calibers of daughter branches. (a) The best fitting for arterial branch was
found at x = 3, which conforms to the Murray’s law. (b) The best fitting for venous
branch was found at x = 2.3 which deviates from the Murray’s law.

The parent branch-daughter branch relationship was also analyzed by finding

the best fitting value x for each branch and then check the distribution of it. For each
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(a) (b)

Figure 5.11: Bland-Altman plots of real parent branch width and predicted parent
branch width. Predicted parent branch width calculated by d = (dx

1 + dx
2)

1/x, where
d1 and d2 are the calibers of two daughter branches. (a) Bland-Altman plot of arterial
branch points. x = 3. (b) Bland-Altman plot of venous branch points. x = 2.3.

branch point, the best fitting power x ranging from 1 to 6, with a step of 0.1 was

found. When the fitting power x is larger than 6, it becomes very sensitive to small

measurement errors [25], as illustrated in Table 5.3. Table 5.3 contains a number of

examples to show how the fitting power becomes very sensitive to small vessel width

changes when x > 6. For instance, when d1 = 15, d1 = 7, a parent branch caliber of

d = 10.18 pixels result in a fitting power of x = 6. A small changes of the parent

branch caliber of 0.15 pixels (from 10.18 pixels to 10.03 pixels) will result in a fitting

value of x = 10. Hence, the branch with a value x > 6 is regarded as outliers and

excluded in this study. Figure 5.12 shows the result. A number of 138 arterial branch

points (out of 1145) and 35 venous branch points (out of 2527) were excluded. The

mean value for arterial branch point is x = 3.07 ± 1.13 and x = 2.39 ± 0.80 for venous

branch.

The performances of different models were also compared. The results are
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Table 5.3: Simulated branch point vessels to illustrate the relationship between ves-
sel width and corresponding fitting power x in model dx = dx

1 + dx
2 , where d is the

diameter of parent branch in pixels, d1, d2 are the diameters of children branches in
pixels.

d
x=3 x=6 x=10 x=20

d1 = 15, d2 = 7 15.49 15.03 15.0007 15.0000
d1 = 10, d2 = 7 11.03 10.18 10.03 10.003
d1 = 10, d2 = 7 6.30 5.61 5.36 5.18

given in Figure 5.13 and Table 5.4.

Table 5.4: Comparison of the performances of different parent branch-daughter
branch relationship models (µ ± σ in µm).
Model Murray’s Model Parr-Hubbard Model Knudtson Model

d3 = d3
1 + d3

2 Wa = (0.87w2
1 + 1.01w2

2 − 0.22w1w2 − 10.76)1/2 Ŵa = 0.88 × (w2
1 + w2

2)1/2

Artery -4.77±8.59 -6.27±8.79 -3.19±8.53
d2.3 = d2.3

1 + d2.3
2 Wv = (0.72w2

1 + 0.91w2
2 + 450.05)1/2 Ŵv = 0.95 × (w2

1 + w2
2)1/2

Vein -1.84±7.68 -1.30 ± 7.51 -0.70±7.65

5.5 Discussion

We proposed a vessel width measurement method for branch points on retinal

images. Performance of the fully automatic method was comparable with human

observers’ performance. Figure 5.8 shows that both the human observers and the

automatic method have low performance for artery branch points. One reason might

be that arteries have a lower contrast with the background while veins usually have a

better contract with the background. Figure 5.14 shows a typical artery branch and
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(a) (b)

Figure 5.12: Histograms of fitting power x in model dx = dx
1 + dx

2 . (a) Histogram of
arterial branch points. (b) Histogram of venous branch points.

a typical vein branch. The venular boundaries are better defined for both observers

and automatic methods.

5.5.1 Parent Branch-Daughter Branch Relationship

There are two basic characteristics of different models: 1. whether a smaller

parent branch vessel width is allowed; 2. whether the model passes through (0,0),

meaning when the diameters of two daughter branches approach zero, the diameter of

parent branch also approaches zero. Murray’s junctional exponent model, which was

initially only proposed for artery, passes through (0,0), but it does not allow a larger

parent branch. In the Parr-Hubbard model, both the model for artery branches and

the model for vein branches don’t passes through (0,0). It allows a larger arterial

parent branch but not a larger venous parent branch. Knudtson’s revised model, on
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Comparison of the performance of different models. (a), (b) Murray’s
junctional exponent model for artery and vein. (c), (d) Parr-Hubbard model for
artery and vein. (e), (f) Knudtson’s revised model for artery and vein.
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(a) (b)

Figure 5.14: Examples of typical arterial branching and venule branching. Arteries
usually have a lower contrast with the background comparing with veins. (a) A
typical arterial branching. (b) A typical venule branching.

the other hand, satisfies both characteristics. It passes through (0,0) and allows a

smaller parent branch for both artery and vein.

Hence, when the condition of a larger parent branch was excluded from the

parent branch-daughter branch relationship study, the Murray’s junctional exponent

explains the arterial parent branch-daughter branch relationship precisely. Otherwise,

the Knudtson’s revised model performs slightly better than the other two models.

As mentioned, the Murray’s model suffers from the limits that a small mea-

surement error will result in big error in fitting x. The smaller the difference between

diameters of parent branch and daughter branch, the more sensitive the model is.

When daughter branch becomes larger than the parent branch, the model fails com-

pletely. Figure 5.15 shows two branches where the algorithm gave a larger daughter
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branch vessel width than a parent branch vessel width. Branches with white circles

are parent branches. We can see in these branches, the daughter branches have com-

parable vessel width with the parent branches. Then a slight measurement error will

result in the failure of Murray’s model.

(a) (b)

Figure 5.15: Example images with similar diameters of parent branch and daughter
branch. Branches with white circles denotes parent branches.

5.5.2 Computational Performance

This method also has a nice computational performance. For a retinal image of

size 2196 × 1958 pixels, the vesselness map generation takes about 100 seconds. The

image centerline image generation takes less than 10 seconds. The average number

of straight vessel segments on the image is 90 and the number of branching is around

30. It takes around 17 seconds to solve the graph for straight vessels and about 9

seconds to solve the graph for branch points. In total, it takes approximately 130
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seconds to process one image.

5.5.3 Limitations

This method also suffers from some limitations. It relies largely on the quality

of the vessel centerline image. If the vessel centerline, which is generated from the

vesselness map, has a branching pattern that is very different with the real branching

pattern, the ELF computation will be incorrect and leads to less reliable measurement

result. The electric field theory based method is computationally intractable for large

scale problems. ELF computation time increases exponentially with the increase in

the number of vertices [64]. It is also easily influenced by noise as the location of

each positive charges influences the computation of every electric line of force in the

electric field. In order to alleviate these problems, the implementation of the electric

field theory based graph construction method is limited to only each branching region,

rather than the whole vessel tree.
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CHAPTER 6
DISCUSSION

A state-of-the-art system of system for retinal vessel delineation and quanti-

tative analysis is presented in this thesis. This system was validated on a number of

datasets, with a wide variety in image resolutions and qualities. The results of our

evaluation showed that the vessel boundary delineation was accurate and comparable

to the performance of human experts.

There are several advantages of the presented system. First, this is the first

fully automated vessel width quantification algorithm for both straight vessel seg-

ments and branch points. As discussed in Section 5.2, in most retinal branching

studies, the vessel width was measured using manual or semi-automatic methods.

The lack of a fully automated vessel width measurement method has restricted reti-

nal vessel quantitative study into very limited datasets. On the other hand, the

presented method enables the study in much larger datasets. For instance, the vessel

width changes with regard to the optic disc was carried out on a dataset of 600 color

fundus images and the parent branch-daughter branch relationship was on a dataset

of 544 color fundus images.

Second, the algorithm is accurate and comparable to the performance of human

experts in a number of tested datasets, while with a much better computational

performance, as discussed in Section 4.5 and Section 5.5. For instance, it takes about

110 seconds to create the vessel segmentation map, 20 seconds to generate the vessel

centerline image, and about 40 seconds to solve all the graphs in an image of size
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2160 × 1440 pixels, with an average of 160 vessel segments, resulting a total running

time of less than 3 minutes. On the other hand, the manual measurement of all vessel

segments in an image of similar resolution is too laborious that no comparison time

is available.

There are also several limitations of this system. First, This algorithm relies

largely on the vessel segmentation result. If the vessel centerline image exhibits a false

positive vessel segment, the algorithm will still try to delineate the vessel boundaries

and hence lead to meaningless measurement result. Second, it tends to have a better

performance in venous vessel measurement, compared with arterial vessel measure-

ment. Arteries usually have a lower contrast to the background comparing with veins,

which leads to a lower performance for both the algorithm and human observers. It

also tends to be biased towards showing a smaller measurement for smaller vessels,

as discussed in Section 4.5. The most likely explanation is that the vessel width mea-

surement is done with a fixed scale parameter σ, while the optimal measurement of

vessels in different scales need different scale parameters. This problem can be solved

by applying a multi-scale cost function.

6.1 Future Work

The methods presented in this thesis have a number of potential applications.

One of the most important applications of this method is the measurement of arteriole-

to-venule ratio (AVR) in the retinal image.

There were mainly two formulas used in the past AVR study, the Parr-Hubbard
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formulas and the Knudtson’s revised formulas. Both formulas have limitations. For

the Parr-Hubbard formulas, Knudtson claimed that the Parr-Hubbard formulas will

lead to spurious variability in the estimation. For example, the calculation allows

contributions of a variable number of vessel diameters for each eye to the overall

estimate of vessel caliber. The association between the number of vessels included

in the calculation and the magnitude of summary estimates potentially decreases the

ability to discern real biological association of vessel caliber. Knudtson also claimed

that the formulas include constant terms in their equations, which in turn cause the

result to be dependent upon the units of measurement.

However, the Knudtson’s revised formulas also suffers from some limitations.

First of all, the calculation of CRAE and CRVE is limited to only the six largest

arterioles and venules, which may be a waste of information if more arterioles or

venules are able to be measured on the image. Secondly, vessel width measurement

was only performed within a circular region centered at the optic disc (Figure 6.1,

Zone B). The obvious drawback of this approach is the AVR changes at smaller

blood vessels, which normally locate outside Zone B will not get measured at all.

Last but not least, the branching coefficient was developed using the semi-automatic

software, the same as what they used for further application, which we think weaken

the reliability of the formulas.

On the other hands, the Parr-Hubbard formulas is more basic and usable.

First of all, though the formulas depend on the unit used in the measurement, we can

easily convert one unit into another unit. Secondly, if we are considering the AVR,
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Figure 6.1: Illustration of the region used to calculate AVR in Knudtson’s revised
formulas.

instead of separate parameters as CRAE and CRVE, we expect the number of blood

vessels would not have a big influence on the final estimation. To further address this

problem, we propose Equation 6.1 and 6.2 to normalize the CRAE and CRVE with

respect to the number of blood vessels included in the calculation. Suppose ma arte-

rioles and mv venules are detected at the edge of the optic disc, where the vessel trees

are excluded if they only contain one vessel segment. We propose the following for-

mulas to calculate the CRAE and CRVE. Besides the normalization method, simply

keep the number of included arterioles and venules the same is expected to eliminate

the problem. Hence, if the normalized formulas does not work as expected, we will

keep the number of arterioles and venules the same and use the original Parr-Hubbard
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formulas to calculate the AVR.

Wa =
(0.87w2

1 + 1.01w2
2 − 0.22w1w2 − 10.76)1/2

ma

, (6.1)

Wv =
(0.72w2

1 + 0.91w2
2 + 450.05)1/2

mv

(6.2)

Except for the measurement described above, some other parameters can also

be measured for the AVR, for example, a general AVR changes with regard to the

geodesic distance to the optic disc.
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CHAPTER 7
CONCLUSION

A fully automated and highly robust retinal vessel delineation and quantitative

analysis method in fundus image was presented. The presented method was able to

precisly measure vessel parameters for both straight vessel segments and for branch

points.

This novel method modeled the vessel boundary delineation problme in two-

dimension into an optimal surface segmentation problem in three-dimension. Then

the optimal surface segmentation problem was transformed into finding a minimum-

cost closed set problem in a vetex-weighted geometric graph (Chapter 4). Further-

more, an improved electric field theoretic method was applied to better adjust the

graph for branch points (Chapter 5). This method was validated on a wide range of

datasets with a diversity in image resolution and image quality. The results showed

that the algorithm was of high accuracy and robustness.

A simultaneous optic disc and fovea detection method was also presented to

facilitate the retinal vasculature analysis (Chapter 3). The location information can

be used in a number of other retinal image analysis projects.

A number of retinal vasculature analysis was provided as applications of pre-

sented methods. Vessel width with regard to the distance to optic disc center was

explored and a monotonic decrease was observed. Branching coefficient for arterioles

and venules was studied and found to be different. At last, a few more potential ap-

plications were discussed as the future work. This approach showed to be promising
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in multiple applications in the field of reitnal vessel quantitative analysis.



www.manaraa.com

111

REFERENCES

[1] “Anatomy of the eye.” http://www.eyesandeyesight.com/2009/02/anatomy-of-
the-eye/.

[2] “Visual system: Light path.” http://en.wikipedia.org/wiki/File:Eye-
diagram.png.

[3] A. C. van Trigt, “Dissertatio ophthalmologica inauguralis de speculo oculi,” Tra-
jecti ad Rhenum, 1853.

[4] “Cjroyle opticians: Fundus camera.” http://www.cjroyleopticians.co.uk/

html/services.html.

[5] A. M. Miller, “Eyewiki.” http://eyewiki.aao.org/Fluorescein Angiography/, 02
2012.

[6] B. Hoffmann, “Ultrasound guide for emergency physicians.”
http://www.sonoguide.com/smparts ocular.html, 2008.

[7] Wikipedia, “retina oct.” http://en.wikipedia.org/wiki/File:Retina-OCT800.png.

[8] T. Y. Wong, F. M. Islam, and R. Klein, “Retinal vascular caliber, cardiovas-
cular risk factors, and inflammation: The multiethnic study of atherosclero-
sis (MESA),” Investigative Ophthalmology and Visual Science, vol. 47, no. 6,
pp. 2341–2350, 2006.

[9] M. Niemeijer, J. Staal, B. van Ginneken, M. Loog, and M. D. Abràmoff, “Com-
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